

UNIT- I

SOFTWARE PROCESS AND AGILE DEVELOPMENT
Introduction to Software Engineering, Software Process, Perspective and Specialized

Process Models –Introduction to Agility – Agile process – Extreme programming – XP

Process.

1.1 INTRODUCTION TO SOFTWARE

ENGINEERING The Evolving Role of Software:

Software can be considered in a dual role. It is a product and, a vehicle for delivering a product.

As a product, it delivers the computing potential in material form of computer hardware.

Example

A network of computers accessible by local hardware, whether it resides within a cellular phone

or operates inside a mainframe computer.

i) As the vehicle, used to deliver the product. Software delivers the most important product of our

time- Information.

ii) Software transforms personal data, it manages business information to enhance competiveness, it

provides a gateway to worldwide information networks (e.g., Internet) and provides the means for

acquiring information in all of its forms.

iii) Software acts as the basis for operating systems, networks, software tools and environments.

1.1.1 software

Software Characteristics

Software is a logical rather than a physical system element. Therefore, software has

characteristics that are considerably different than those of hardware:

1. Software is developed or engineered; it is not manufactured in the classical sense.

Although some similarities exist between software development and hardware manufacture, the

two activities are fundamentally different.

In both activities, high quality is achieved through good design, but the manufacturing phase for

hardware can introduce quality problems that are nonexistent (or easily corrected) for software.

2. Software doesn't "wear out."

Figure 1.1 Failure curve for hardware

Figure 1.1 depicts failure rate as a function of time for hardware.

The relationship, often called the "bathtub curve", indicates that hardware exhibits relatively high

failure rates early in its life (these failures are often attributable to design or manufacturing

defects); defects are corrected and the failure rate drops to a steady-state level (ideally, quite low) for

some period of time.

As time passes, however, the failure rate rises again as hardware components suffer from the

cumulative effects of dust, vibration, abuse, temperature extremes, and many other environmental

maladies.

Stated simply, the hardware begins to wear out.

Figure 1.2 Idealized and actual failure curves for software

The failure rate curve for software should take the form of the ―idealized curve‖ shown in Fig

1.2.

Undiscovered defects will cause high failure rates early in the life of a program.

However, these are corrected (ideally, without introducing other errors) and the curve flattens as

shown.

The idealized curve is a gross oversimplification of actual failure models the implication is clear—

software doesn't wear out.

During its life, software will undergo change (maintenance).

As changes are made, it is likely that some new defects will be introduced, causing the failure

rate curve to spike as shown in Figure 1.2.

Before the curve can return to the original steady-state failure rate, another change is requested,

causing the curve to spike again.

Slowly, the minimum failure rate level begins to rise—the software is deteriorating due to change.

3. Although the industry is moving toward component-based assembly, most software

Continues to be custom built.

Software component should be designed and implemented so that it can be reused in many different

programs.

For example, today's graphical user interfaces are built using reusable components that enable the

creation of graphics windows, pull-down menus, and a wide variety of interaction mechanisms.

The data structure and processing detail required to build the interface are contained with a library

of reusable components for interface construction.

1.1.2. Software Application Domains

The following categories of computer software present continuing challenges for software

engineers.

a) System software:

System software is a collection of programs written to service other programs.

Example: compilers, editors, and file management utilities, operating system components, drivers,

telecommunications processors, process largely indeterminate data.

b) Real-time software:

Elements of real-time software includes

a data gathering component that collects and formats information from an external environment

an analysis component that transforms information as required by the application

a control/output component that responds to the external environment

a monitoring component that coordinates all other components so that real-time response (typically

ranging from 1 millisecond to 1 second) can be maintained.

c) Business software:

Business information processing is the largest single software application area.

Example: payroll, accounts receivable/payable, inventory.

Applications in this area restructure existing data in a way that facilitates business operations or

management decision making. In addition to conventional data processing application, business

software applications also encompass interactive computing

Example: point of-sale transaction processing.

d) Engineering and scientific software:

This is the software using ―number crunching" algorithms.

Example: System simulation, computer-aided design.

e) Embedded software:

Embedded software resides in read-only memory and is used to control products and systems for

the consumer and industrial markets.

Example: keypad control for a microwave oven

It provides significant function and control capability

Example: Digital functions in an automobile such as fuel control, dashboard displays, and braking

systems.

f) Personal computer software:

Word processing, spreadsheets, computer graphics, multimedia, entertainment, database

management, personal and business financial applications, external network, and database access

are only a few of hundreds of applications.

g) Web-based software:

The Web pages retrieved by a browser are software that incorporates executable instructions (Ex:

CGI, HTML, Perl, or Java), and data (EX: hypertext and a variety of visual and audio formats).

Expert systems, also called knowledgebase systems, pattern recognition (image and voice),

artificial neural networks, theorem proving, and game playing are representative of applications

within this category.

SOFTWARE ENGINEERING

In order to build software that is ready to meet the challenges and it must recognize a few simple

realities:

It follows that a concerted effort should be made to understand the problem before a software

solution is developed.

It follows that design becomes a pivotal activity.

It follows that software should exhibit high quality.

It follows that software should be maintainable.

These simple realities lead to one conclusion: software in all of its forms and across all of its

application domains should be engineered.

Software engineering is the establishment and use of sound engineering principles in order to

obtain economically software that is reliable and works efficiently on real machines.

Software engineering encompasses a process, methods for managing and engineering software,

and tools.

1.1.3 Software Engineering: A Layered Technology

Software engineering is a layered technology as shown in below Figure 1.3

Figure1.3 Layered Technology

The foundation for software engineering is the process layer.

The software engineering process is the glue that holds the technology layers together and enables

rational and timely development of computer software.

Process defines a framework that must be established for effective delivery of software

engineering technology.

Software process:

The software process forms the basis for management control of software projects and establishes

the context in which technical methods are applied, work products (models, documents, data,

reports, forms, etc.) are produced, milestones are established, quality is ensured, and change is

properly managed.

Software engineering methods:

Software engineering methods provide the technical how-to‘s for building software.

Software engineering methods rely on a set of basic principles that govern each area of the

technology and include modelling activities and other descriptive techniques.

Software engineering tools:

Software engineering tools provide automated or semi-automated support for the process and the

methods.

When tools are integrated so that information created by one tool can be used by another, a system

for the support of software development, called computer-aided software engineering, is

established.

1.1.4 The Software Process

A process is a collection of activities, actions, and tasks that are performed when some work

product is to be created.

An activity strives to achieve a broad objective and is applied regardless of the application domain,

size of the project, complexity of the effort, or degree of rigor with which software engineering is

to be applied.

An action (e.g., architectural design) encompasses a set of tasks that produce a major work product

(e.g., an architectural design model).

A task focuses on a small, but well-defined objective (e.g., conducting a unit test) that produces a

tangible outcome.

 A process framework establishes the foundation for a complete software engineering process by

identifying a small number of framework activities that are applicable to all software projects,

regardless of their size or complexity.

 In addition, the process framework encompasses a set of umbrella activities that are applicable

across the entire software process. A generic process framework for software engineering

encompasses five activities:

The five generic process framework activities:

a) Communication:

The intent is to understand stakeholders‘ objectives for the project and to gather requirements that

help define software features and functions.

b) Planning:

Software project plan—defines the software engineering work by describing the technical tasks to

be conducted, the risks that are likely, the resources that will be required, the work products to be

produced, and a work schedule.

c) Modelling:

A software engineer does by creating models to better understand software requirements and the

design that will achieve those requirements.

d) Construction:

This activity combines code generation (either manual or automated) and the testing that is

required to uncover errors in the code.

e) Deployment:

Software engineering process framework activities are complemented by a number of umbrella

activity.

In general, umbrella activities are applied throughout a software project and help a software team

manage and control progress, quality, change, and risk. Typical umbrella activities include:

i) Software project tracking and control—allows the software team to assess progress against the

project plan and take any necessary action to maintain the schedule.

ii) Risk management—assesses risks that may affect the outcome of the project or the quality of the

product.

iii) Software quality assurance—defines and conducts the activities required to ensure software

quality.

iv) Technical reviews—access software engineering work products in an effort to uncover and

remove errors before they are propagated to the next activity.

v) Measurement—defines and collects process, project, and product measures that assist the team

in delivering software that meets stakeholders‘ needs; can be used in conjunction with all other

framework and umbrella activities.

vi) Software configuration management—manages the effects of change throughout the software

process.

vii) Reusability management—defines criteria for work product reuse(including software

components) and establishes mechanisms to achieve reusable components.

viii) Work product preparation and production—encompasses the activities required to create work

products such as models, documents, logs, forms, and lists.

1.1.5 Software Engineering Practice:

A basic understanding of the generic concepts and principles that apply to framework activities

The essence of problem solving, and consequently, the essence of software engineering practice:

1. Understand the problem (communication and analysis).

2. Plan a solution (modeling and software design).

3. Carry out the plan (code generation).

4. Examine the result for accuracy (testing and quality assurance).

1.1.6. Software Myths

1.Management myths.

A software manager often believes that myths will lessen the pressure

Myth: We already have a book that's full of standards and procedures for building

Software, won't that provide my people with everything they need to know?

Reality: The book of standards may very well exist, but is it used? Are software

Practitioners aware of its existence? Does it reflect modern software engineering practice? Is it

complete? Is it streamlined to improve time to delivery while still maintaining focus on quality?

In many cases, the answer to all of these questions is "no."

Myth: My people have state-of-the-art software development tools, after all, we

buy them the newest computers.

Reality: It takes much more than the latest model mainframe, workstation, or PC

to do high-quality software development. Computer-aided software engineering

(Sometimes called the Mongolian horde concept).

Reality: ―Adding people to a late software project makes it later." As new people are

added, People who were working must spend time educating the newcomers, thereby

reducing the amount of time spent on productive development effort. People can be added

but only in a planned and well-coordinated manner.

Myth: If I decide to outsource3 the software project to a third party, I can just relax and let that

firm build it.

Reality: If an organization does not understand how to manage and control software projects

internally, it will invariably struggle when it outsources software projects.

2. Customer myths. In many cases, the customer believes myths about software because Software

managers and practitioners do little to correct misinformation. Myths lead to false expectations (by

the customer) and ultimately, dissatisfaction with the developer.

Myth: A general statement of objectives is sufficient to begin writing programs—

We can fill in the details later.

Reality: A poor up-front definition is the major cause of failed software efforts. A formal

and detailed description of the information domain, function, behavior, performance, interfaces,

design constraints, and validation criteria is essential. These characteristics can be determined only

after thorough communication between customer and developer.

Myth: Project requirements continually change, but change can be easily

accommodated because software is flexible.

Reality: It is true that software requirements change, but the impact of change

Varies with the time at which it is introduced.

If serious attention is given to up-front definition, early requests for change can be

accommodated easily. When changes are requested during software design, the cost

impact grows rapidly. Change can cause upheaval that requires additional resources and major

design modification, that is, additional cost. Changes in function, performance, interface, or other

characteristics during implementation (code and test) have a severe impact on cost.

3. Practitioner's myths. Myths that are still believed by software practitioners have been fostered

by 50 years of programming culture. During the early days of software, programming was viewed

as an art form. Old ways and attitudes die hard.

Myth: Once we write the program and get it to work, our job is done.
Reality: Someone once said that "the sooner you begin 'writing code', the longer it‘ll take

you to get done." Industry data indicate that between 60 and 80 percent of all effort

expended on software will be expended after it is delivered to the customer for the first

time.

Myth: Until I get the program "running" I have no way of assessing its quality.

Reality: One of the most effective software quality assurance mechanisms can be applied

from the inception of a project—the formal technical review. Software reviews are a

"quality Filter" that have been found to be more effective than testing for finding certain

classes of Software defects.

Myth: The only deliverable work product for a successful project is the working program.

Reality: A working program is only one part of a software configuration that includes

1.1.7 Software Engineering Paradigm:

 A software process model is an abstract representation of a process. It presents a description of a

process from some particular perspective.

 Manufacturing software can be characterized by a series of steps ranging from concept exploration

to final retirement; this series of steps is generally referred to as a software lifecycle.

 Steps or phases in a software lifecycle fall generally into these categories:

Requirements

Specification (analysis)

Design

Implementation

Testing

Integration

Maintenance

Retirement

 Software engineering employs a variety of methods, tools, and paradigms.

 Paradigms refer to particular approaches or philosophies for designing, building and maintaining

software. Different paradigms each have their own advantages and disadvantages.

 A method (also referred to as a technique) is heavily depended on a selected paradigm and may be

seen as a procedure for producing some result. Methods generally involve some formal notation

and process(es).

 Tools are automated systems implementing a particular method.

 Thus, the following phases are heavily affected by selected software paradigms

Design

Implementation

Integration

Maintenance

The software development cycle involves the activities in the production of a software system.

Generally the software development cycle can be divided into the following phases:

a) Requirements analysis and specification

Design

 Preliminary design

 Detailed design

Implementation

o Component Implementation

o Component Integration

o System Documenting

Testing

Unit testing

Integration testing

System testing

 Change requirements and software upgrading

b) Verification - Validation

Verification: "Are we building the product right"

The software should conform to its specification

Validation: "Are we building the right product"

The software should do what the user really requires

1.2 SOFTWARE

PROCESS A Generic

Process Model

A process was defined as a collection of work activities, actions, and tasks that are performed when

some work product is to be created.

Each of these activities, actions, and tasks reside within a framework or model that defines their

relationship with the process and with one another.

 The software process is represented schematically in Figure 1.4. Referring to the figure 1.4, each

framework activity is populated by a set of software engineering actions.

Figure 1.4 Software Process Framework

Process flow—describes how the framework activities and the actions and tasks that occur within

each framework activity are organized with respect to sequence and time.

(a) A linear process flow executes each of the five framework activities in sequence,

beginning with communication and culminating with deployment.

a) Linear Process Flow

(b) An iterative process flow repeats one or more of the activities before proceeding to the next.

b) Iterative process flow

(c) An evolutionary process flow executes the activities in a ―circular‖manner. Each circuit

through the five activities leads to a more complete version of the software.

c) Evolutionary process flow

(d) A parallel process flow executes one or more activities in parallel with other activities (e.g.,

modelling for one aspect of the software might be executed in parallel with construction of another

aspect of the software).

d) Parallel process flow

Identifying a Task Set:

A task set defines the actual work to be done to accomplish the objectives of a software engineering

action.

For example, elicitation (more commonly called ―requirements gathering‖) is an important

software engineering action that occurs during the communication activity.

The goal of requirements gathering is to understand what various stakeholders want from the

software that is to be built.

Process Patterns:

A process pattern describes a process-related problem that is encountered during software

engineering work, identifies the environment in which the problem has been encountered, and

suggests one or more proven solutions to the problem.

Patterns can be defined at any level of abstraction. In some cases, a pattern might be used to

describe a problem (and solution) associated with a complete process model (e.g., prototyping).

In other situations, patterns can be used to describe a problem (and solution) associated with a

framework activity (e.g., planning) or an action within a framework activity (e.g., project

estimating).

Ambler [Amb98] has proposed a template for describing a process pattern:

Pattern Name: The pattern is given a meaningful name describing it within the context of the

software process (e.g., Technical Reviews).

Forces: The environment in which the pattern is encountered and the issues that make the problem

visible and may affect its solution.

Type: The pattern type is specified. Ambler [Amb98] suggests three types:

1. Stage pattern—defines a problem associated with a framework activity for the process. Since

a framework activity encompasses multiple actions and work tasks, a stage pattern incorporates

multiple task patterns (see the following)that are relevant to the stage (framework activity).

 An example of a stage pattern might be Establishing Communication. This pattern would

incorporate the task pattern Requirements Gathering and others.

2. Task pattern—defines a problem associated with a software engineering action or work task

and relevant to successful software engineering practice (e.g., Requirements Gathering is a task

pattern).

3. Phase pattern—define the sequence of framework activities that occurs within the process,

even when the overall flow of activities is iterative in nature.

 An example of a phase pattern might be Spiral Model or Prototyping.

Initial context: Describes the conditions under which the pattern applies.

Prior to the initiation of the pattern:

(1) What organizational or team-related activities have already occurred?

(2) What is the entry state for the process?

(3) What software engineering information or project information already exists?

For example, the Planning pattern (a stage pattern) requires that

(1) customers and software engineers have established a collaborative communication ;

(2) successful completion of a number of task patterns [specified] for the Communication pattern

has occurred; and

(3) the project scope, basic business requirements, and project constraints are known.

Problem: The specific problem to be solved by the pattern.

Solution:

Describes how to implement the pattern successfully.

This section describes how the initial state of the process (that exists before the pattern is

implemented) is modified as a consequence of the initiation of the pattern.

It also describes how software engineering information or project information that is available

before the initiation of the pattern is transformed as a consequence of the successful execution of

the pattern.

Resulting Context: Describes the conditions that will result once the pattern has been successfully

implemented. Upon completion of the pattern:

(1) What organizational or team-related activities must have occurred?

(2) What is the exit state for the process?

(3) What software engineering information or project information has been developed?

Related Patterns:

i) Provide a list of all process patterns that are directly related to this one. This may be represented

as a hierarchy or in some other diagrammatic form.

ii) For example, the stage pattern Communication encompasses the task patterns:

 ProjectTeam,

 CollaborativeGuidelines,

 ScopeIsolation,

 RequirementsGathering,

 ConstraintDescription, and

 ScenarioCreation.

Known Uses and Examples:

Indicate the specific instances in which the pattern are applicable.

For example, Communication is mandatory at the beginning of every software project, is

recommended throughout the software project, and is mandatory once the deployment activity is

under way.

1.3 PRESCRIPTIVE PROCESS MODELS

 Prescriptive process models were originally proposed to bring order to the chaos of software

development.

 Prescriptive process models define a prescribed set of process elements anda predictable process

work flow.

 Prescriptive Process Models

The Waterfall Model

Incremental Process Models

Evolutionary Process Models

1.3.1 The Waterfall Model

The waterfall model, sometimes called the classic life cycle, suggests a systematic,

sequential approach to software development that begins with customer specification of

requirements and progresses through planning, modelling, construction, and deployment,

culminating in ongoing support of the completed software.

A variation in the representation of the waterfall model is called the V-model.

Represented in Figure 1.5, the V-model [Buc99] depicts the relationship of quality assurance

actions to the actions associated with communication, modelling, and early construction activities.

FIGURE 1.5The waterfall model

As a software team moves down the left side of the V, basic problem requirements are refined into

progressively more detailed and technical representations of the problem and its solution.

Once code has been generated, the team moves up the right side of the V, essentially performing

a series of tests (quality assurance actions) that validate each of the models created as the team

moved down the left side.

In reality, there is no fundamental difference between the classic life cycle and the V-model.

The V-model provides a way of visualizing how verification and validation actions are applied to

earlier engineering work.

Benefits of waterfall model:

The waterfall model is simple to implement

For implementation of small systems waterfall model is useful.

Drawbacks of waterfall model:

There are some problems that are encountered if we apply the waterfall model and those are:

It is difficult to follow the sequential flow in software development process. If some changes are

made at some phases then it may cause some confusion.

The requirement analysis is done initially and sometimes it is not possible to state all the

requirements explicitly in the beginning. This causes difficulty in the project.

The customer can see the working model of the project only at the end. After reviewing of the

working model; if the customer gets dissatisfied then it causes serious problems.

Linear nature of waterfall model induces blocking states, because certain tasks may be dependent

on some previous tasks. Hence it is necessary to accomplish all the dependant tasks first. It may

cause long waiting time.

1.3.2 Incremental Process Models:

The incremental model delivers a series of releases, called increments that provide

progressively more functionality for the customer as each increment is delivered.

The incremental model applies linear sequences in a staggered fashion as calendar time

progresses.

Each linear sequence produces deliverable ―increments‖ of the software [McD93] in a manner

that is similar to the increments produced by an evolutionary process flow.

The first increment is called core product. In this release the basic requirements are implemented

and then in subsequent increments new requirements are added.

The core product is used by the customer (or undergoes detailed evaluation).

As a result of use and/or evaluation, a plan is developed for the next increment. The plan addresses

the modification of the core product to better meet the needs of the customer and the delivery of

additional features and functionality. This process is repeated following the delivery of each

increment, until the complete product is produced.

Figure 1.7 Incremental Process Model

i) In the second increment, more sophisticated document producing and processing facilities, file

management functionalities are given.

Incremental process Model advantages

1. Produces working software early during the lifecycle.

2. More flexible as scope and requirement changes can be implemented at low cost.

3. Testing and debugging is easier, as the iterations are small.

4. Low risks factors as the risks can be identified and resolved during each iteration.

Incremental process Model disadvantages

1. This model has phases that are very rigid and do not overlap.

2. Not all the requirements are gathered before starting the development; this could lead to

problems related to system architecture at later iterations.

1.3.2.1 The RAD Model

Rapid Application Development is a linear sequential software development process model that

emphasizes an extremely short development cycle.

Rapid application achieved by using a component based construction approach.

If requirements are well understood and project scope is constrained the RAD process enables a

development team to create a ―fully functional system.

RAD phases:

Business modeling

Data modeling

Process modeling

Application generation

Testing and turnover

Business modelling:

What information drives the business process?

What information is generated?

Who generates it?

Where does the information go?

Who processes it?

Data modelling:

The information flow defined as part of the business modeling phase is refined into a set of data

objects that are needed to support the business.

The characteristics (called attributes) of each object are identified and the relationships between

these objects are defined.

Process modelling:

The data modelling phase are transformed to achieve the information flow necessary to implement

a business function.

Processing descriptions are created for adding, modifying, deleting, or retrieving a data object.

Application generation:

RAD assumes the use of 4 generation techniques.

Possible) or created reusable components (when necessary).

Figure1.8: RAD Process model

Testing and Turnover:

Since the RAD process emphasizes reuse, many of the program components have already been

testing.

This reduces over all testing time.

However, new components must be tested and all interfaces must be fully exercised.

Advantages &Disadvantages of RAD:

Advantages

Extremely short development time.

Uses component-based construction and emphasizes reuse and code generation

Disadvantages

Large human resource requirements (to create all of the teams).

Requires strong commitment between developers and customers for ―rapid-fire‖

activities.

High performance requirements can‘t be met (requires tuning the components).

1.3.3 Evolutionary Process Models

Evolutionary process models produce an increasingly more complete version of the software with

each iteration.

1.3.3.1 The Prototyping Model:

The prototyping paradigm (Figure 1.9) begins with communication.Developer and customer meet

and define the overall objectives for the software, identify whatever requirements are known,

A quick design focuses on a representation of those aspects of the software that will be visible to

the customer/user (e.g. Input approaches and output formats). The quick design leads to the

construction of a prototype.

The prototype is evaluated by the customer/user and used to refine requirements for the software

to be developed. Iteration occurs as the prototype is tuned to satisfy the needs of the customer,

while at the same time enabling the developer to better understand what needs to be done.

Ideally, the prototype serves as a mechanism for identifying software requirements.

If a working prototype is built, the developer attempts to use existing program fragments or applies

tools (e.g., report generators, window managers) that enable working programs to be generated

quickly.

Advantages:

Requirements can be set earlier and more reliably.

Customer sees results very quickly.

Customer is educated in what is possible helping to refine requirements.

Requirements can be communicated more clearly and completely.

Between developers and clients Requirements and design options can be investigated quickly and

cheaply.

Figure 1.9: Prototyping Model

Drawbacks of prototyping:

In the first version itself, customer often wants ―few fixes‖ rather than rebuilding of the system

whereas rebuilding of new system maintains high level of quality.

The first version may have some compromises.

Sometimes developer may make implementation compromises to get prototype working quickly.

Later on developer may become comfortable with compromises and forget why they are

inappropriate.

1.3.3.2 Spiral Model:

The spiral model is an evolutionary software process model that couples the iterative nature of

prototyping with the controlled and systematic aspects of the linear sequential model.

The spiral development model is a risk-driven process model generator that is used to guide multi-

stakeholder concurrent engineering of software intensive systems.

It has two main distinguishing features.

One is a cyclic approach for incrementally growing a system‘s degree of definition and

implementation while decreasing its degree of risk.

The other is a set of anchor point milestones for ensuring stakeholder commitment to feasible and

mutually satisfactory system solutions.

Using the spiral model, software is developed in a series of incremental releases.

A spiral model is divided into a number of framework activities, also called task regions.

Typically, there are between three and six task regions. Figure1.10depictsspiral model that

contains six task regions:

Customer communication—tasks required to establish effective communication between

developer and customer.

Planning—tasks required to define resources, timelines, and other project related information.

Risk analysis—tasks required to assess both technical and management risks.

Engineering—tasks required to build one or more representations of the application.

Construction and release—tasks required to construct, test, install, and provide user support

(e.g., documentation and training).

Figure 1.10: Spiral model

Customer evaluation—tasks required to obtain customer feedback based on evaluation of the

software representations created during the engineering stage and implemented during the

installation stage

As this evolutionary process begins, the software engineering team moves aroundthe spiral in a

clockwise direction, beginning at the centre.

Anchor point milestones—a combination of work products and conditions that are attained along

the path of the spiral

The first circuit around the spiral might result in the development of a product specification;

Each cube placed along the axis can be used to represent the starting point for different types of

projects A ―concept development project‖ starts at the core of the spiral and will continue until

concept development is complete.

If the concept is to be developed into an actual product, the process proceeds through the next cube

(new product development project entry point) and a ―new development project‖ is initiated. The

new product will evolve through a number of iterations around the spiral, following the path that

bounds the core region.

Spiral model is realistic approach to development of large-scale systems and software. Because

customer and developer better understand the problem statement at each evolutionary level. Also

risks can be identified or rectified at each such level.

Spiral Model Advantages:

Requirement changes can b made at every stage.

Risks can be identified and rectified before they get problematic.

Spiral Model disadvantages:

It is based on customer communication. If the communication is not proper then the software

product that gets developed will not be up to the mark.

It demands considerable risk assessment. If the risk assessment is done properly then only the

successful product can be obtained.

1.3.4 Concurrent Models

The concurrent development modelis also called as concurrent engineering.

It allows a software team to represent iterative and concurrent elements of any of the process

models.

In this model, the framework activities or software development tasks are represented as

states.

For example, the modeling or designing phase of software development can be in one of the states

like under development, waiting for modification, under revision or under review and so on.

All software engineering activities exist concurrently but reside in different states.

These states make transitions. That is during modeling, the transition from under development

state to waiting for modification state occurs.

Customer indicates that changes in requirements must be made, the modeling activity moves from

the under development state into the awaiting changes state.

This model basically defines the series of events due to which the transition from one state to

another state occurs. This is called triggering. These series of events occur for every software

development activity, action or task.

Advantages:

All types of software development can be done using concurrent development model.

This model provides accurate picture of current state of project.

Each activity or task can be carried out concurrently. Hence this model is an efficient process

model.

Figure 1.11 One element of the concurrent process model

1.4 SPECIALIZED PROCESS MODELS:

The specialized models are used when only collections of specialized technique or

methods are expected for developing the specific software.

Various types of specialized models are-

1. Component based development

2. Formal methods model

3. Aspect oriented software development

Component based development:

The commercial off-the-shelves components that are developed by the vendors are used during the

software built.

These components have specialized targeted functionalities and well defined interfaces. Hence it

is easy to integrate these components into the existing software.

The component-based development model incorporates many of the characteristics of the spiral

model. It is evolutionary in nature.

Modeling and construction activities begin with the identification of candidate components. These

components can be designed as either conventional software modules or object-oriented classes or

packages of classes

Following steps are applied for component based development

1. Available component-based products are researched and evaluated for theapplication

domain in question.

2. Component integration issues are considered.

3. A software architecture is designed to accommodate the components.

Formal

specification

High Level

design

Architectural

design

System

Requirement

specification

User

requirements

definition

 Software reusability is the major advantage of component based development.

 The reusability reduces the development cycle time and overall cost.

Formal methods model:

The formal methods model encompasses a set of activities that leads to formal mathematical

specification of computer software.

Formal methods enable you to specify, develop, and verify a computer-based system by applying

a rigorous, mathematical notation. A variation on this approach, called cleanroom software

engineering.

The advantage of using formal methods model is that it overcomes many problems that we

encounter in traditional software process models.

Ambiguity, Incompletenessand Inconsistency are those problems that can be overcome if we

use formal methods model.

.

Figure 1.12 Steps involved in Formal Method Model

The formal methods model offers detect-free software. However there are some drawbacks of

this model which resists it from getting used widely.

These drawbacks are

 The development of formal models is currently quite time consuming and expensive.

 Because few software developers have the necessary background to apply formal methods,

extensive training is required.

 It is difficult to use the models as a communication mechanism for technically unsophisticated

customers.

Aspect oriented software development:

AOSD defines ―aspects‖ that express customer concerns that cut across multiple system functions,

features, and information.

In traditional software development process the system is decomposed into multiple units of

primary functionality.

When concerns cut across multiple system functions, features, and information, they are often

referred to as crosscutting concerns.

Aspectual requirements define those crosscutting concerns that have an impact across the

software architecture.

Aspect-oriented software development (AOSD), often referred to as aspect-oriented

programming (AOP), is a relatively new software engineering paradigm that provides a process

and methodological approach for defining, specifying, designing, and constructing aspects—

―mechanisms beyond subroutines and inheritance for localizing the expression of a crosscutting

concern‖.

Agility and the Cost of Change

TheseslidesaredesignedtoaccompanySoftwareEngineering:APractitioner’sApproach,7/e

3

1.5 INTRODUCTION TO AGILITY:

1.5.1 What is Agility?

Agility is the ability to respond quickly to changing needs. It encourages team structures and

attitudes that make effective communication among all stakeholders.

It emphasizes rapid delivery of operational software and de-emphasizes the importance of

intermediate work products.

It adopts the customer as a part of the development team.

It helps in organizing a team so that it is in control of the work performed.

Yielding

Agility results in rapid, incremental delivery of software.

1.5.2 Agility and the Cost of Change:

The cost of change in software development increases nonlinearly as a project progresses (Figure

1.13, solid black curve).

It is relatively easy to accommodate a change when software team gathered its requirements.

The costs of doing this work are minimal, and the time required will not affect the outcome of the

project.

Cost varies quickly, and the cost and time required to ensure that the change is made without any

side effects is nontrivial.

An agile process reduces the cost of change because software is released in increments and

changes can be better controlled within an increment.

Agile process ―flattens‖ the cost of change curve (Figure 1.11, shaded, solid curve), allowing a

software team to accommodate changes late in a software project without dramatic cost and time

impact.

When incremental delivery is coupled with other agile practices such as continuous unit testing

and pair programming, the cost of making a change is attenuated.

Figure 1.13Change costs as a function of time in development

1.6 AN AGILE PROCESS

An Agile Process is characterized in a manner that addresses a number of key assumptions

about the majority of software project:

1. It is difficult to predict which software requirements will persist and which will change.

2. It is difficult to predict how customer priorities will change.

3. It is difficult to predict how much design is necessary before construction.

4. Analysis, design, construction, and testing are not as predictable.

1.6.1 Agility Principles:

1. To satisfy the customer through early and continuous delivery of software.

2. Welcome changing requirements, even late in development.

3. Deliver working software frequently, from a couple of weeks to a couple of months.

4. ‘Customers and developers must work together daily throughout the project.

5. Build projects around motivated individuals.

6. Emphasis on face-to-face communication.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity--the art of maximizing the amount of work not done--is essential.

11. Self-organizing teams produce the best architectures/requirements/design.

12. The team reflects on how to become more effective at regular intervals.

1.6.2 Human Factors:

Agile development focuses on the talents and skills of individuals, molding the process to

specific people and teams.

The process molds to the needs of the people and team, not the other wayaround.

A number of key traits must exist among the people on an agile team and the team itself:

 Competence.

 Commonfocus.

 Collaboration.

 Decision-makingability.

 Fuzzy problem-solvingability.

 Mutual trust andrespect.

 Self-organization.

1.7 EXTREME PROGRAMMING (XP):

The best-known and a very influential agile method, Extreme Programming (XP) takes an

‗extreme‘ approach to iterative development.

 New versions may be built several times per day;

 Increments are delivered to customers every 2 weeks;

 All tests must be run for every build and the build is only accepted if tests run successfully.

This is how XP supports agile principles:

Figure 1.14The extreme programming release cycle

People not process through pair programming, collective ownership and a process that avoids

long working hours.

Change supported through regular system releases.

Maintaining simplicity through constant refactoring of code.

1.7.1 XP values:

 XP is comprised of five values such as:

i. Communication

ii. Simplicity

iii. Feedback

iv. Courage

v. Respect.

 Each of these values is used as a driver for specific XP activities, actions, and task.

 In order to achieve effective communication between software engineers and other

stakeholders, XP emphasizes close, yet informal(verbal) collaboration between customers and

developers, the establishment of effective metaphors for communicating important concepts,

continuous feedback, and the avoidance of voluminous documentation as a communication

medium.

 To consider simplicity, XP restricts developers to design only for immediate needs, rather than

future needs.

 Feedback is derived from three sources: the software, the customer and other team members.

 By designing and implementing an effective testing strategy, the software provides the agile team

with feedback.

 The team develops a unit test for each class being developed, to exercise each operation according

to its specified functionality.

 The user stories or use cases are implemented by the increments being used as a basis for

acceptance tests. The degree to which software implements the output, function, and behavior

of the test case is a form of feedback.

 An agile XP team must have the courage (discipline) to design for today, recognizing that future

requirements may change dramatically, thereby demanding substantial rework of the design and

implemented code.

 For example, there is often significant pressure to design for future requirements.

1.8 The XP Process:

Extreme programming uses an object-oriented approachfor software development.

There are four framework activities involved in XP Process are shown in Figure 1.15.

1. Planning

2. Designing

3. Coding

4. Testing

1. Planning:

Begins with the creation of a set of stories (also called user stories).

Each story is written by the customer and is placed on an index card.

The customer assigns a value (i.e. a priority) to the story.

Agile team assesses each story and assigns a cost.

Stories are grouped to for a deliverable increment.

Figure 1.15The Extreme Programming Process

A commitment is made on delivery date.

After the first increment ―project velocity‖ is used to help define subsequent delivery dates for

other increments.

2. Design:

Follows the keep it simple principle.

Encourage the use of CRC (class-responsibility-collaborator) cards.

For difficult design problems, suggests the creation of ―spike solutions‖—a design prototype.

Encourages ―refactoring‖—an iterative refinement of the internal program design

Design occurs both before and after coding commences.

3. Coding:

Recommends the construction of a series of unit tests for each of the stories before coding

Encourages ―pair programming‖

– Developers work in pairs, checking each other's work and providing the

support to always do a good job.

– Mechanism for real-time problem solving and real-time quality assurance.

– Keeps the developers focused on the problem at hand.

Needs continuous integration with other portions (stories) of the s/w, which provides a ―smoke

testing‖ environment.

4. Testing:

The creation of unit test before coding is the key element of the XP approach.

The unit tests that are created should be implemented using a framework that enables them to be

automated.

This encourages regression testing strategy whenever code is modified.

Individual unit tests are organize into a ―Universal Testing Suit‖, integration and validation testing

of the system can occur on daily basis. This provides the XP team with a continual indication of

progress and also can raise warning flags early if things are going away.

XP acceptance test, also called customer test, are specified by the customer and focus on the overall

system feature and functionality that are visible and reviewable by the customer.

1.8.1 Industrial XP:

i) IXP is an organic evolution of XP.

ii) It is imbued with XP‘s minimalist, customer –centric, test-driven spirit.IXP differs most from the

original XP in its greater inclusion of management, its expanded role for customers, and its

upgraded technical practices.

iii) IXP incorporates six new practices that are designed to help ensure that an XP project works

successfully for significant projects within a large organization.

Readiness assessment: The organization should conduct a readiness assessment prior to the

initiation of an IXP project. The assessment ascertains whether

i) an appropriate development environment exists

ii) the team will be populated by the proper set of stakeholders.

iii) the organization has a distinct quality program and supports continuous improvement.

iv) the organizational culture will support the new values of an agile team, and

v) the broader project community will be populated appropriately.

Project community:

i) People on the team must be well-trained, adaptable and skilled, and have the proper temperament

to contribute to a self-organizing team.

ii) When XP is to be applied for a significant project in a large organization, the concept of the ―team‖

should morph into that of a community.

iii) A community may have a technologist and customers who are central to the success of a project

as well as many other stakeholders may play important roles on the project.

Project chartering:

i) The IXP team assess the project itself to determine whether the project exists and whether the

project will further the overall goals and objectives of the organization.

ii) It also determines how it complements, extends, or replaces existing systems or process.

i) Test driven management establishes a series of measurable ―destinations‖ and then defines

mechanisms for determining whether or not these destinations have been reached. Retrospectives:

i) An IXP team conducts a technical review after software increment is delivered called

retrospective.

ii) This review examines ―issues,events,and lessons-learned‖ across a software increment and/or the

entire software release.

iii) The intent is to improve the IXP process.

Continuous learning:

i) Learning is a vital product of continuous process improvement, members of the XP team are

encouraged to learn new methods and techniques that can lead to a higher quality product.

ii) In addition to these six new practices, IXP modifies a number of existing XP practices.

 Story-driven development (SDD) insists that stories for acceptance tests be written before a

single line of code is developed.

 Domain-driven design (DDD):

i) It is an improvement on the ―system metaphor‖ concept used in XP.

ii) It suggests the creation of a domain model that accurately represents how domain experts think

about their subject.

Pairing extends the XP pair-programming concept to include managers and their stakeholders.

The intent is to improve knowledge sharing among XP team members who may not be directly

involved in technical development.

Iterative usability discourages front-loaded interface design in favor of usability design that

evolves as software increments are delivered and users‘ interaction with the software.

1.8.2 The XP Debate:

Extreme Programming has done heated debate for both new process models and methods.

This examines the efficacy of XP, but Stephens and Rosenberg argue that many XP practices are

worthwhile, but others have been overhyped, and a few are problematic.

The authors suggest that the codependent natures of XP practices are both its strength and its

weakness.

Because many organizations adopt only a subset of XP practices, they weaken the efficacy of the

entire process.

Proponents counter that XP is continuously evolving and that many of the issues raised by critics

have been addressed as XP practice matures.

Among the issues that continue to trouble some critics of XP are:

Requirements volatility.

 Because the customer is an active member of the XP team, changes to requirements are requested

informally.

 As a consequence, the scope of the project can change and earlier work may have to be modified

to accommodate current needs.

Conflicting customer needs.

 Many projects have multiple customers, each withhisown set of needs.Requirements are expressed

informally.

 Critics argue that amore formal model or specification is often needed to ensure that

omissions,inconsistencies, and errors are uncovered before the system is built.

Lack of formal design.

 XP deemphasizes the need for architectural design andin many instances, suggests that design of

all kinds should be relativelyinformal.

 Critics argue that when complex systems are built, design must beemphasized to ensure that the

overall structure of the software will exhibit quality and maintainability.

 XP proponents suggest that the incremental nature of the XP process limits complexity (simplicity

is a core value) and therefore reduces the need for extensive design.

1.8.3 Other Agile Process Models

1. Adaptive Software Development (ASD)

2. Dynamic Systems Development Method (DSDM)

3. Scrum

4. Crystal

5. Feature Driven Development (FDD)

6. Agile Modeling (AM)

7. Lean Software Development (LSD)

8. Agile Unified Process (AUP)

1.8.3.1 Adaptive Software Development (ASD)

Adaptive Software Development (ASD) is a technique for building complex software and ASD

incorporates three phases Speculation, Collaboration, and Learning systems

ASD focus on human collaboration and team self-organization.

Speculation:

Figure 1.16Adaptive Software Development

―Speculate‖ refers to the planning paradox—outcomes are unpredictable, therefore, endless

suppositions on a product‘s look and feel are not likely to lead to any business value.

The big idea behind speculate is when we plan a product to its smallest detail as in a requirements

In the ASD mindset, planning is to speculation as intention is to need.

Collaboration:

Collaboration represents a balance between managing the doing and creating and maintaining the

collaborative environment.

Speculation says we can‘t predict outcomes. If we can‘t predict outcomes, we can‘t plan. If we can‘t

plan, traditional project management theory suffers.

Collaboration weights speculation in that a project manager plans the work between the predictable

parts of the environment and adapts to the uncertainties of various factors—stakeholders,

requirements, software vendors, technology, etc.

Learning:

―Learning‖ cycles challenge all stakeholders and project team members.

Based on short iterations of design, build and testing, knowledge accumulates from the small

mistakes we make due to false assumptions, poorly stated or ambiguous requirements or

misunderstanding the stakeholders‘ needs.

Correcting those mistakes through shared learning cycles leads to greater positive experience and

eventual mastery of the problem domain.

1.8.3.2 Dynamic Systems Development Methods (DSDM)

The Dynamic Systems Development Method is an agile software development approach that

―provides a framework for building and maintaining systems which meet tight time constraints

through the use of incremental prototyping in a controlled project environment‖.

DSDM is an iterative software process in which each iteration follows the 80 percent rule.

That is, only enough work is required for each increment to facilitate movement to the next

increment.

The remaining detail can be completed later when more business requirements are known or

changes have been requested and accommodated.

DSDM life cycle that defines three different iterative cycles, preceded by two additional life cycle

activities:

Feasibility study—establishes the basic business requirements and constraints associated with the

application to be built and then assesses whether the application is a viable candidate for the DSDM

process.

Business study—establishes the functional and information requirements that will allow the

application to provide business value; also, defines the basic application architecture and identifies

the maintainability requirements for the application.

Functional model iteration—produces a set of incremental prototypes that demonstrate

functionality for the customer.

Design and build iteration—revisits prototypes built during functional model iteration to ensure

that each has been engineered in a manner that will enable it to

provide operational business value for end users.

Implementation—places the latest software increment into the operational environment.

DSDM can be combined with XP to provide a combination approach that defines a solid process

model (the DSDM life cycle) with the nuts and bolts practices (XP) that are required to build

combined process model.

1.8.3.3 Scrum

Scrum principles are consistent with the agile manifesto and are used to guide development

activities within a process that incorporates the five framework activities: requirements, analysis,

design, evolution, and delivery.

Within each framework activity, work tasks occur within a process pattern called a sprint

The work conducted within a sprint (the number of sprints required for each framework activity

will vary depending on product complexity and size) is adapted to the problem at hand and is

defined and often modified in real time by the Scrum team.

Scrum emphasizes the use of a set of software process patterns that have proven effective for

projects with tight timelines, changing requirements, and business criticality.

Each of these process patterns defines a set of development actions: Backlog—a prioritized list of

project requirements or features that provide business value for the customer.

Items can be added to the backlog at any time (this is how changes are introduced).

The product manager assesses the backlog and updates priorities as required.

1.8.3.4 Crystal

The Crystal methodology is one of the most lightweight, adaptable approaches to software

development. Crystal is actually comprised of a family of agile methodologies such as Crystal

Clear, Crystal Yellow, Crystal Orange and others, whose unique characteristics are driven by

several factors such as team size, system criticality, and project priorities.

This Crystal family addresses the realization that each project may require a slightly tailored set

of policies, practices, and processes in order to meet the project‗s unique characteristics.

Several of the key tenets of Crystal include teamwork, communication, and simplicity, as well as

reflection to frequently adjust and improve the process.

Like other agile process methodologies, Crystal promotes early, frequent delivery of working

software, high user involvement, adaptability, and the removal of bureaucracy or distractions.

1.8.3.5 Feature Driven Development(FDD)

Figure1.17: Feature Driven Development Model

FDD is a model-driven, short-iterationprocess.

The features are small, ―useful in the eyes of the client‖ results.

FDD designs the rest of the development process around feature delivery using the following eight

practices:

 Domain Object Modelling

 Developing by Feature

 Component/Class Ownership

 Feature Teams

 Inspections

 Configuration Management

 Regular Builds

 Visibility of progress and results

FDD recommends specific programmer practices such as ―Regular Builds‖ and ―Component/Class

Ownership‖.

Unlike other agile methods, FDD describes specific, very short phases of work, which are to be

accomplished separately per feature.

These include Domain Walkthrough, Design, Design Inspection, Code, Code Inspection, and Promote to

Build.

1.8.3.6 Agile Modelling (AM)

Agile Modeling (AM) is a practice-based methodology for effective modeling and documentation

of software-based systems.

Simply put, Agile Modeling (AM) is a collection of values, principles, and practices for modeling

software that can be applied on a software development project in an effective and light-weight

manner.

Although AM suggests a wide array of ―core‖ and ―supplementary‖ modeling principles, those

that make AM unique are:

Use multiple models.

 There are many different models and notations that can be used to describe software.

 AM suggests that to provide needed insight, each model should present a different aspect of the

system and only those models that provide value to their intended audience should be used.

Travel light.

 As software engineering work proceeds, keep only those models that will provide long-term value

and jettison the rest.

Content is more important than representation.

 Modeling should impart information to its intended audience.

 A syntactically perfect model that imparts little useful content is not as valuable as a model with

flawed notation that nevertheless provides valuable content for its audience.

Know the models and the tools you use to create them.

 Understand the strengths and weaknesses of each model and the tools that are used to create it.

Adapt locally.

 The modelling approach should be adapted to the needs of the agile team.

1.8.3.7 Lean Software Development (LSD):

Lean Software Development (LSD) has adapted the principles of lean manufacturing to the world

of software engineering.

The lean principles that inspire the LSD process can be summarized as eliminate waste, build

quality in, create knowledge, defer commitment, deliver fast, respect people, and optimize the

whole.

For example, eliminate waste within the context of an agile software project can be interpreted to

mean

 Adding no extraneous features or functions

 Assessing the cost and schedule impact of any newly requested requirement

 Removing any superfluous process steps

 Establishing mechanisms to improve the way team members find information

 Ensuring the testing finds as many errors as possible,

 Reducing the time required to request and get a decision that affects the software or the process

that is applied to create it,

 Streamlining the manner in which information is transmitted to all stakeholders involved in the

process.

1.8.3.8 Agile Unified Process (AUP):

AUP adopts a ―serial in the large‖ an ―iterative in the small‖ philosophy for building computer-based

systems.

Byadopting the classic UP phased activities –inception, elaboration, construction, andtransition.

It enables a team to visualize the overall process flow for a software project.

Each AUP iteration addresses the following activities:

(i) Modelling. It represents the business and problem domains.

(ii) Implementation. Models translated into source code.

(iii) Testing. Executes a series of tests to uncover errors and ensures that the source code meets its

requirements.

(iv) Deployment. Focus on the delivery of software increment and the acquisition of feedback

(v) from end users.

(vi) Configuration and project management. Configuration management addresses change management, risk

management, andthecontrolofanypersistent workproductsthat areproducedbytheteam.

(vii) Environment management. It coordinates a process infrastructure that includes standards, tools, and

other support technology available to the team.

Agile Methods Applicability:

Product development where a software company is developing a small or medium-sized product.

Custom system development within an organization, where there is a clear commitment from the

customer to become involved in the development process and where there are not a lot of external

rules and regulations that affect the software.

Because oftheir focus on small, tightly-integrated teams, there are problems in scaling agile methods

to large systems.

Problems with agile methods:

It can be difficult to keep the interest of customers who are involved in the process.

Maintaining simplicity requires extra work.

Contracts may be a problem as with other approaches to iterative development.

Important questions:

Compare and Contrast the different life cycle models.

Waterfall model Spiral model Prototyping model Incremental model

Requirements must

be clearly

understood and

defined at the

beginning only.

The Requirements

analysis and

gathering can be

done in iterations

because

requirements get

changed quite often.

Requirement analysis

can be made in the later

stages of development

cycle, because

requirements get

changed quite

often.

Requirement analysis

can be made in the later

stages of development

cycle

The development

team having the

adequate experience

of working

on the

similar project is

chosen to work on

this type of process

model.

The development

team having the

adequate experience

of

working on

the similar

project is

allowed in this

process model.

The development team

having the adequate

experience of working

on the similar project is

allowed in this process

model.

The development team

having the adequate

experience of working

on the similar project is

chosen to work on this

type of process model.

There is no user

involvement in all

the phases of

development

process.

There is no user

involvement in all

the phases of

development

process.

There is user

involvement in all the

phases of

development process.

There is user

involvement in all the

phases of

development process.

When the

requirements are

reasonably well

defined and the

development effort

suggests a purely

linear effort then the

waterfall

model is chosen.

Due to iterative

nature of this model

the risk identification

and rectification is

done before they get

problematic. Hence

for handling real time

problems the spiral

model is chosen.

When developer is

unsure about the

efficiency of an

algorithm or the

adaptability of an

operating system then

the Prototyping

model is chosen.

When the

requirements are

reasonably

wel

l defined and the

development effort

suggests a purely linear

effort and when limited

set of software

functionality is needed

quickly then the

incremental model is

chosen.

Compare and Contrast waterfall model with spiral model.

S.No Waterfall model Spiral model

 It requires well understanding of

requirements and familiar technology.

It is developed in iterations. Hence the

requirement can be identified at new

iterations.

 Difficult to accommodate changes after

the process has started.

The required changes can be made at every

stage of new version.

 Can accommodate iteration but

indirectly.

It is iterative model.

 Risks can be identified at the end which

may cause failure to the product.

Risks can be identified and reduced before

they get problematic.

 The customer can see the working model

of the project only at the end. After

reviewing of the working model, if the

customer gets dissatisfied then it

causes serious problems.

The customer can see the working product

at certain stages of iterations.

 Customers prefer this model. Developers prefer this model.

 This model is good for small systems. This model is good for large systems

 It has sequential nature. It has evolutionary nature.

2.2.1 Characteristics of good SRS

Pins

Control flow

UNIT III SOFTWARE DESIGN 9

Software design – Design process – Design concepts – Coupling – Cohesion – Functional

independence – Design patterns – Model-view-controller – Publish subscribe – Adapter –

Command – Strategy – Observer – Proxy – Facade – Architectural styles – Layered - Client

Server - Tiered - Pipe and filter- User interface design-Case Study.

Software Design is the process of transforming user requirements into a suitable form, which

helps the programmer in software coding and implementation. During the software design

phase, the design document is produced, based on the customer requirements as documented

in the SRS document. Hence, this phase aims to transform the SRS document into a design

document.

The following items are designed and documented during the design phase:

1. Different modules are required.

2. Control relationships among modules.

3. Interface among different modules.

4. Data structure among the different modules.

5. Algorithms are required to be implemented among the individual modules.

Objectives of Software Design

1. Correctness: A good design should be correct i.e., it should correctly implement all the

functionalities of the system.

2. Efficiency: A good software design should address the resources, time, and cost

optimization issues.

3. Flexibility: A good software design should have the ability to adapt and accommodate

changes easily. It includes designing the software in a way, that allows for modifications,

enhancements, and scalability without requiring significant rework or causing major

disruptions to the existing functionality.

4. Understandability: A good design should be easily understandable, it should be

modular, and all the modules are arranged in layers.

5. Completeness: The design should have all the components like data structures,

modules, external interfaces, etc.

6. Maintainability: A good software design aims to create a system that is easy to

understand, modify, and maintain over time. This involves using modular and well-structured

design principles e.g.,(employing appropriate naming conventions and providing clear

documentation). Maintainability in Software and design also enables developers to fix bugs,

enhance features, and adapt the software to changing requirements without excessive effort

or introducing new issues.

Software Design Concepts

Concepts are defined as a principal idea or invention that comes into our mind or in thought to

understand something. The software design concept simply means the idea or principle

behind the design. It describes how you plan to solve the problem of designing software, and

the logic, or thinking behind how you will design software. It allows the software engineer to

create the model of the system software or product that is to be developed or built. The software

https://www.geeksforgeeks.org/software-engineering-software-design-process/

design concept provides a supporting and essential structure or model for developing the right

software. There are many concepts of software design and some of them are given below:

Points to be Considered While Designing Software

1. Abstraction (Hide Irrelevant data): Abstraction simply means to hide the details to

reduce complexity and increase efficiency or quality. Different levels of Abstraction are

necessary and must be applied at each stage of the design process so that any error that is

present can be removed to increase the efficiency of the software solution and to refine the

software solution. The solution should be described in broad ways that cover a wide range

of different things at a higher level of abstraction and a more detailed description of a

solution of software should be given at the lower level of abstraction.

2. Modularity (subdivide the system): Modularity simply means dividing the system or

project into smaller parts to reduce the complexity of the system or project. In the same way,

modularity in design means subdividing a system into smaller parts so that these parts can

be created independently and then use these parts in different systems to perform different

functions. It is necessary to divide the software into components known as modules

because nowadays, there are different software available like Monolithic software that is

hard to grasp for software engineers. So, modularity in design has now become a trend and

is also important. If the system contains fewer components then it would mean the system is

complex which requires a lot of effort (cost) but if we can divide the system into components

then the cost would be small.

3. Architecture (design a structure of something): Architecture simply means a

technique to design a structure of something. Architecture in designing software is a concept

that focuses on various elements and the data of the structure. These components interact

with each other and use the data of the structure in architecture.

4. Refinement (removes impurities): Refinement simply means to refine something to

remove any impurities if present and increase the quality. The refinement concept of

software design is a process of developing or presenting the software or system in a

detailed manner which means elaborating a system or software. Refinement is very

necessary to find out any error if present and then to reduce it.

5. Pattern (a Repeated form): A pattern simply means a repeated form or design in which

the same shape is repeated several times to form a pattern. The pattern in the design

process means the repetition of a solution to a common recurring problem within a certain

context.

6. Information Hiding (Hide the Information): Information hiding simply means to hide

the information so that it cannot be accessed by an unwanted party. In software design,

information hiding is achieved by designing the modules in a manner that the information

gathered or contained in one module is hidden and can‟t be accessed by any other

modules.

7. Refactoring (Reconstruct something): Refactoring simply means reconstructing

something in such a way that it does not affect the behavior of any other features.

Refactoring in software design means reconstructing the design to reduce complexity and

simplify it without impacting the behavior or its functions. Fowler has defined refactoring as

“the process of changing a software system in a way that it won‟t impact the behavior of the

design and improves the internal structure”.

3.2 DESIGN CONCEPTS

 Design concepts provides the software designer with a foundation from which more

sophisticated design methods can be applied and helps the software engineer to answer the

following questions: • What criteria can be used to partition software into individual

components? • How is function or data structure detail separated from a conceptual

representation of the software? • What uniform criteria define the technical quality of a software

design? Fundamental software design concepts provide the necessary framework for "getting it

right."

Abstraction

Architecture

Patterns

Separation of Concerns

 Modularity

Information Hiding

Functional Independence

Refinement

Aspects Refactoring Object-Oriented Design Concepts Design Classes

Coupling and Cohesion

Module Coupling

In software engineering, the coupling is the degree of interdependence between software
modules. Two modules that are tightly coupled are strongly dependent on each other.
However, two modules that are loosely coupled are not dependent on each other. Uncoupled
modules have no interdependence at all within them.

The various types of coupling techniques are shown in fig:

A good design is the one that has low coupling. Coupling is measured by the number of

relations between the modules. That is, the coupling increases as the number of calls between

modules increase or the amount of shared data is large. Thus, it can be said that a design with

high coupling will have more errors.

Types of Module Coupling

1. No Direct Coupling: There is no direct coupling between M1 and M2.

In this case, modules are subordinates to different modules. Therefore, no direct coupling.

2. Data Coupling: When data of one module is passed to another module, this is called data
coupling.

.

3. Stamp Coupling: Two modules are stamp coupled if they communicate using composite
data items such as structure, objects, etc. When the module passes non-global data
structure or entire structure to another module, they are said to be stamp coupled. For example,
passing structure variable in C or object in C++ language to a module.

4. Control Coupling: Control Coupling exists among two modules if data from one module is
used to direct the structure of instruction execution in another.

5. External Coupling: External Coupling arises when two modules share an externally imposed
data format, communication protocols, or device interface. This is related to communication
to external tools and devices.

6. Common Coupling: Two modules are common coupled if they share information through
some global data items.

7. Content Coupling: Content Coupling exists among two modules if they share code, e.g., a
branch from one module into another module.

Module Cohesion

In computer programming, cohesion defines to the degree to which the elements of a module
belong together. Thus, cohesion measures the strength of relationships between pieces of
functionality within a given module. For example, in highly cohesive systems, functionality is
strongly related.

Cohesion is an ordinal type of measurement and is generally described as "high cohesion" or
"low cohesion." (Strength of relationship within the module)

Types of Modules Cohesion

1. Functional Cohesion: Functional Cohesion is said to exist if the different elements of

a module, cooperate to achieve a single function.

2. Sequential Cohesion: A module is said to possess sequential cohesion if the element

of a module form the components of the sequence, where the output from one

component of the sequence is input to the next.

3. Communicational Cohesion: A module is said to have communicational cohesion, if

all tasks of the module refer to or update the same data structure, e.g., the set of

functions defined on an array or a stack.

4. Procedural Cohesion: A module is said to be procedural cohesion if the set of purpose

of the module are all parts of a procedure in which particular sequence of steps has to

be carried out for achieving a goal, e.g., the algorithm for decoding a message.

5. Temporal Cohesion: When a module includes functions that are associated by the fact

that all the methods must be executed in the same time, the module is said to exhibit

temporal cohesion.

6. Logical Cohesion: A module is said to be logically cohesive if all the elements of the

module perform a similar operation. For example Error handling, data input and data

output, etc.

7. Coincidental Cohesion: A module is said to have coincidental cohesion if it performs

a set of tasks that are associated with each other very loosely, if at all.

Differentiate between Coupling and Cohesion

Coupling Cohesion

Coupling is also called Inter-Module Binding. Cohesion is also called Intra-Module Binding.

Coupling shows the relationships between

modules.

Cohesion shows the relationship within the

module.

Coupling shows the

relative independence between the

modules.

Cohesion shows the module's

relative functional strength.

While creating, you should aim for low

coupling, i.e., dependency among modules

should be less.

While creating you should aim for high

cohesion, i.e., a cohesive component/ module

focuses on a single function (i.e., single-

mindedness) with little interaction with other

modules of the system.

In coupling, modules are linked to the other

modules.

In cohesion, the module focuses on a single

thing.

Software Design Patterns

Software design patterns are communicating objects and classes that are customized to

solve a general design problem in a particular context. Software design patterns are general,

reusable solutions to common problems that arise during the design and development of

software. They represent best practices for solving certain types of problems and provide a way

for developers to communicate about effective design solutions. Design patterns capture expert

knowledge and experience, making it easier for developers to create scalable, maintainable,

and flexible software systems.

Software Design Patterns Tutorial

Types of Software Design Patterns
1. Creational Design Patterns

● Factory Method Design Pattern

● Abstract Factory Method Design Pattern

● Singleton Method Design Pattern

● Prototype Method Design Pattern

● Builder Method Design Pattern
2. Structural Design Patterns

● Adapter Method Design Patterns

● Bridge Method Design Patterns

● Composite Method Design Patterns

● Decorator Method Design Patterns

● Facade Method Design Patterns

● Flyweight Method Design Patterns

● Proxy Method Design Patterns
2. Behavioral Design Patterns

● Chain Of Responsibility Method Design Pattern

● Command Method Design Pattern

● Interpreter Method Design Patterns

● Mediator Method Design Pattern

● Memento Method Design Patterns

● Observer Method Design Pattern

● State Method Design Pattern

● Strategy Method Design Pattern

● Template Method Design Pattern

● Visitor Method Design Pattern

1. What are Design Patterns?

https://www.geeksforgeeks.org/software-design-patterns/?ref=shm#types-of-software-design-patterns
https://www.geeksforgeeks.org/software-design-patterns/?ref=shm#creational-design-patterns
https://www.geeksforgeeks.org/factory-method-for-designing-pattern/
https://www.geeksforgeeks.org/abstract-factory-pattern/
https://www.geeksforgeeks.org/singleton-design-pattern-introduction/
https://www.geeksforgeeks.org/prototype-design-pattern/
https://www.geeksforgeeks.org/builder-design-pattern/
https://www.geeksforgeeks.org/software-design-patterns/?ref=shm#structural-design-patterns
https://www.geeksforgeeks.org/adapter-pattern/
https://www.geeksforgeeks.org/bridge-design-pattern/
https://www.geeksforgeeks.org/composite-design-pattern/
https://www.geeksforgeeks.org/decorator-pattern/
https://www.geeksforgeeks.org/facade-design-pattern-introduction/
https://www.geeksforgeeks.org/flyweight-design-pattern/
https://www.geeksforgeeks.org/proxy-design-pattern/
https://www.geeksforgeeks.org/software-design-patterns/?ref=shm#behavioral-design-patterns
https://www.geeksforgeeks.org/chain-responsibility-design-pattern/
https://www.geeksforgeeks.org/command-pattern/
https://www.geeksforgeeks.org/interpreter-design-pattern/
https://www.geeksforgeeks.org/mediator-design-pattern/
https://www.geeksforgeeks.org/memento-design-pattern/
https://www.geeksforgeeks.org/observer-pattern-set-1-introduction/
https://www.geeksforgeeks.org/state-design-pattern/
https://www.geeksforgeeks.org/strategy-pattern-set-1/
https://www.geeksforgeeks.org/template-method-design-pattern/
https://www.geeksforgeeks.org/visitor-design-pattern/

Design patterns are basically defined as reusable solutions to the common problems that
arise during software design and development. They are general templates or best practices
that guide developers in creating well-structured, maintainable, and efficient code.

2. Types of Design Patterns

Types of Design Patterns

Basically, there are several types of design patterns that are commonly used in software
development. These patterns can be categorized into three main groups:

1. Creational Design Patterns

● Singleton Pattern

● The Singleton method or Singleton Design pattern is one of the simplest design
patterns. It ensures a class only has one instance, and provides a global point
of access to it.

● Factory Method Pattern

● The Factory Method pattern is used to create objects without specifying the
exact class of object that will be created. This pattern is useful when you need
to decouple the creation of an object from its implementation.

● Abstract Factory Pattern

● Abstract Factory pattern is almost similar to Factory Pattern and is considered
as another layer of abstraction over factory pattern. Abstract Factory patterns
work around a super-factory which creates other factories.

● Builder Pattern

● Builder pattern aims to “Separate the construction of a complex object from
its representation so that the same construction process can create different
representations.” It is used to construct a complex object step by step and the
final step will return the object.

● Prototype Pattern

● Prototype allows us to hide the complexity of making new instances from the
client.

● The concept is to copy an existing object rather than creating a new instance
from scratch, something that may include costly operations. The existing object
acts as a prototype and contains the state of the object.

2. Structural Design Patterns

https://www.geeksforgeeks.org/creational-design-pattern/
https://www.geeksforgeeks.org/singleton-design-pattern/
https://www.geeksforgeeks.org/factory-method-for-designing-pattern/
https://www.geeksforgeeks.org/abstract-factory-pattern/
https://www.geeksforgeeks.org/builder-design-pattern/
https://www.geeksforgeeks.org/prototype-design-pattern/
https://www.geeksforgeeks.org/structural-design-patterns/

● Adapter Pattern

● The adapter pattern converts the interface of a class into another interface
clients expect. Adapter lets classes work together that couldn‟t otherwise
because of incompatible interfaces

● Bridge Pattern

● The bridge pattern allows the Abstraction and the Implementation to be
developed independently and the client code can access only the Abstraction
part without being concerned about the Implementation part

● Composite Pattern

● Composite pattern is a partitioning design pattern and describes a group of
objects that is treated the same way as a single instance of the same type of
object. The intent of a composite is to “compose” objects into tree structures to
represent part-whole hierarchies.

● Decorator Pattern

● It allows us to dynamically add functionality and behavior to an object
without affecting the behavior of other existing objects within the same class.

● We use inheritance to extend the behavior of the class. This takes place at
compile-time, and all the instances of that class get the extended behavior.

● Facade Pattern

● Facade Method Design Pattern provides a unified interface to a set of
interfaces in a subsystem. Facade defines a high-level interface that makes the
subsystem easier to use.

● Proxy Pattern

● Proxy means „in place of‟, representing‟ or „in place of‟ or „on behalf of‟ are literal
meanings of proxy and that directly explains Proxy Design Pattern.

● Proxies are also called surrogates, handles, and wrappers. They are closely
related in structure, but not purpose, to Adapters and Decorators.

● Flyweight Pattern

● This pattern provides ways to decrease object count thus improving application
required objects structure. Flyweight pattern is used when we need to create a
large number of similar objects

https://www.geeksforgeeks.org/adapter-pattern/
https://www.geeksforgeeks.org/bridge-design-pattern/
https://www.geeksforgeeks.org/composite-design-pattern-in-java/
https://www.geeksforgeeks.org/decorator-pattern-set-3-coding-the-design/
https://www.geeksforgeeks.org/facade-design-pattern-introduction/
https://www.geeksforgeeks.org/proxy-design-pattern/
https://www.geeksforgeeks.org/flyweight-design-pattern/

3. Behavioral Design Patterns

● Observer Pattern

● It defines a one-to-many dependency between objects, so that when one
object (the subject) changes its state, all its dependents (observers) are notified
and updated automatically.

● Strategy Pattern

● that allows the behavior of an object to be selected at runtime. It is one of the
Gang of Four (GoF) design patterns, which are widely used in object-oriented
programming.

● The Strategy pattern is based on the idea of encapsulating a family of
algorithms into separate classes that implement a common interface.

● Command Pattern

● The Command Pattern is a behavioral design pattern that turns a request into a
stand-alone object, containing all the information about the request. This object
can be passed around, stored, and executed at a later time

● Chain of Responsibility Pattern

● Chain of responsibility pattern is used to achieve loose coupling in software
design where a request from the client is passed to a chain of objects to process
them.

● Later, the object in the chain will decide themselves who will be processing the
request and whether the request is required to be sent to the next object in the
chain or not.

● State Pattern

https://www.geeksforgeeks.org/behavioral-design-patterns/
https://www.geeksforgeeks.org/observer-pattern-set-1-introduction/
https://www.geeksforgeeks.org/strategy-pattern-set-2/
https://www.geeksforgeeks.org/command-pattern/
https://www.geeksforgeeks.org/chain-responsibility-design-pattern/
https://www.geeksforgeeks.org/state-design-pattern/

● A state design pattern is used when an Object changes its behavior based on
its internal state. If we have to change the behavior of an object based on its
state, we can have a state variable in the Object and use the if-else condition
block to perform different actions based on the state.

● Template Method Pattern

● Template method design pattern is to define an and leave the details to be
implemented by the child classealgorithm as a skeleton of operationss. The
overall structure and sequence of the algorithm are preserved by the parent
class.

● Visitor Pattern

● It is used when we have to perform an operation on a group of similar kind of
Objects. With the help of visitor pattern, we can move the operational logic from
the objects to another class.

● Interpreter Pattern

● Interpreter pattern is used to defines a grammatical representation for a
language and provides an interpreter to deal with this grammar.

● Mediator Pattern

● It enables decoupling of objects by introducing a layer in between so that the
interaction between objects happen via the layer.

● Memento Pattern

● It is used to restore the state of an object to a previous state. As your
application is progressing, you may want to save checkpoints in your application
and restore back to those checkpoints later.

● Intent of Memento Design pattern is without violating encapsulation, capture and
externalize an object‟s internal state so that the object can be restored to this
state later.

3. Use cases of Design Patterns

https://www.geeksforgeeks.org/template-method-design-pattern/
https://www.geeksforgeeks.org/visitor-design-pattern/
https://www.geeksforgeeks.org/interpreter-design-pattern/
https://www.geeksforgeeks.org/mediator-design-pattern/
https://www.geeksforgeeks.org/memento-design-pattern/

Use Cases of Design Pattern

Design patterns are a valuable tool in software development, and they offer various benefits and
uses, some of them are explained below :

● Enhancing Maintainability:

● Design patterns help organize code in a structured and consistent way. This
makes it easier to maintain, update, and extend the codebase. Developers
familiar with the patterns can quickly understand and work on the code.

● Promoting Code Reusability:

● Design patterns encapsulate solutions to recurring design problems. By using
these patterns, we can create reusable templates for solving specific problems in
different parts of your application.

● Simplifying Complex Problems:

● Complex software problems can be broken down into smaller, more manageable
components using design patterns. This simplifies development by addressing
one problem at a time and, in turn, makes the code more maintainable.

● Improving Scalability:

● Design patterns, particularly structural patterns, allow us to create a flexible and
extensible architecture, making it easier to add new features or components.

● Improving Testability:

● Code designed with patterns in mind is often more modular and easier to test. we
can write unit tests for individual components or classes, leading to more reliable
and robust software.

● Supporting Cross-Platform Development:

● Design patterns are not tied to a specific programming language or platform.
They are general guidelines that can be applied across different technologies,
making it easier to adapt your code to different environments.

● Enhancing Collaboration:

● Design patterns provide a common language and a shared understanding among
team members. They enable developers to communicate effectively and
collaborate on software projects by referring to well-known design solutions.

4. Applications of Design Patterns

Basically, design patterns should be used when they provide a clear and effective solution to a
recurring problem in our software design. Here are some situations where we can use the
design patterns.

Application of Design Patterns

● Collaboration: Suppose if we are working in a team or on a project with multiple
developers, so there design patterns can facilitate collaboration by providing a common
language and shared understanding of how to address specific design challenges.

● Recurring Problem: Suppose if we encounter a design problem that we have seen in
different forms in multiple projects or if it‟s a well-known and documented problem in
software development, it‟s a good indicator that a design pattern might be useful.

● Maintainability and Extensibility: When we wants to create code that is easy to maintain,
extend, and modify over time, design patterns can help by providing a structured approach
to problem-solving.

● Cross-Platform Development: When we need to create code that works on different
platforms or with various technologies, design patterns provide a platform-agnostic way to
solve common problems.

● Testing and Debugging: Design patterns can make our code more modular and testable,
leading to improved testing and debugging processes.

● Design Review and Planning: During the design and planning phase of a project, we can
proactively consider the use of design patterns to solve anticipated design challenges.

It’s important to note that design patterns are not a one-size-fits-all solution. They should be
used judiciously, and not all problems require the application of a design pattern. Always
consider the specific context and requirements of your project when deciding whether to use a
design pattern.

MVC Design Pattern

What is the MVC Design Pattern?

The Model View Controller (MVC) design pattern specifies that an application consists of a
data model, presentation information, and control information. The pattern requires that each of
these be separated into different objects.

● The MVC pattern separates the concerns of an application into three distinct components,
each responsible for a specific aspect of the application‟s functionality.

● This separation of concerns makes the application easier to maintain and extend, as
changes to one component do not require changes to the other components.

Components of the MVC Design Pattern

1. Model

The Model component in the MVC (Model-View-Controller) design pattern represents
the data and business logic of an application. It is responsible for managing the application‟s
data, processing business rules, and responding to requests for information from other
components, such as the View and the Controller.
2. View

Displays the data from the Model to the user and sends user inputs to the Controller. It is
passive and does not directly interact with the Model. Instead, it receives data from the Model
and sends user inputs to the Controller for processing.
3. Controller

Controller acts as an intermediary between the Model and the View. It handles user
input and updates the Model accordingly and updates the View to reflect changes in the Model.
It contains application logic, such as input validation and data transformation.

Communication between the components

This below communication flow ensures that each component is responsible for a
specific aspect of the application‟s functionality, leading to a more maintainable and scalable
architecture

● User Interaction with View:

● The user interacts with the View, such as clicking a button or entering text into a
form.

● View Receives User Input:

● The View receives the user input and forwards it to the Controller.

● Controller Processes User Input:

● The Controller receives the user input from the View.

● It interprets the input, performs any necessary operations (such as updating the
Model), and decides how to respond.

● Controller Updates Model:

● The Controller updates the Model based on the user input or application logic.

● Model Notifies View of Changes:

● If the Model changes, it notifies the View.

● View Requests Data from Model:

● The View requests data from the Model to update its display.

● Controller Updates View:

● The Controller updates the View based on the changes in the Model or in
response to user input.

● View Renders Updated UI:

● The View renders the updated UI based on the changes made by the Controller.

Example of the MVC Design Pattern

Below is the code of above problem statement using MVC Design Pattern:

Let‟s break down into the component wise code:

1. Model (Student class)

Represents the data (student‟s name and roll number) and provides methods to access and
modify this data.

Advantages of the MVC Design Pattern

● Separation of Concerns: MVC separates the different aspects of an application (data, UI,
and logic), making the code easier to understand, maintain, and modify.

● Modularity: Each component (Model, View, Controller) can be developed and tested
separately, promoting code reusability and scalability.

● Flexibility: Since the components are independent, changes to one component do not
affect the others, allowing for easier updates and modifications.

● Parallel Development: Multiple developers can work on different components
simultaneously, speeding up the development process.

● Code Reusability: The components can be reused in other parts of the application or in
different projects, reducing development time and effort.

Disadvantages of the MVC Design Pattern

● Complexity: Implementing the MVC pattern can add complexity to the code, especially for
simpler applications, leading to overhead in development.

● Learning Curve: Developers need to understand the concept of MVC and how to
implement it effectively, which may require additional time and resources.

● Overhead: The communication between components (Model, View, Controller) can lead to
overhead, affecting the performance of the application, especially in resource-constrained
environments.

● Potential for Over-Engineering: In some cases, developers may over-engineer the
application by adding unnecessary abstractions and layers, leading to bloated and hard-to-
maintain code.

● Increased File Count: MVC can result in a larger number of files and classes compared to
simpler architectures, which may make the project structure more complex and harder to
navigate.

 ARCHITECTURAL STYLES

The architectural model or style is a pattern for creating the system architecture

for a given problem. The software that is built for computer-based systems also

exhibits many architectural styles.

Each style describes a system category that encompasses

(1) A set of components(e.g., a database, computational modules) that perform a function

required by a system;

(2) A set of connectors that enable “communication, coordination and cooperation” among

components;

(3) Constraints that define how components can be integrated to form the system;

(4) Semantic models that enable a designer to understand the overall properties of a

system by analyzing the known properties of its constituent parts. In the section that follows,

we consider commonly used architectural patterns for software.

A Brief Taxonomy of Styles and Patterns

a)Data-centered architectures.

A data store (e.g., a file or database) resides at the center of this architecture and is

accessed frequently by other components that update, add, delete, or otherwise modify data

within the store. Figure (Data-centered architecture) illustrates typical data-centered style.

Client software accesses a central repository.

FIG Data-centered architecture

Data-centered architectures promote integrability. That is, existing

components can be changed and new client components can be

added to the architecture without concern about other clients

b) Data-flow architectures.

This architecture is applied when input data is to be transformed

through a series of computational or manipulative components into

output data.

A pipe and filter pattern has a set of components, called filters, connected

by pipes that transmit data from one component to the next.

Each filter works independently of those components upstream and

downstream, is designed to expect data input of a certain form, and

produces data output (to the next filter) of a specified form. However, the

filter does not require knowledge of the working of its neighboring filters.

If the data flow degenerates into a single line of transforms, it is termed batch sequential. This

pattern accepts a batch of data and then applies a series of sequential components (filters) to

transform it

c)Call and return architectures.

This architectural style enables a software designer (system architect) to achieve a program

structure that is relatively easy to modify and scale. A number of sub styles exist within this

category:

• Main program/subprogram architectures. This classic program structure

decomposes function into a control hierarchy where a “main” program invokes a

number of program components, which in turn may invoke still other components.

• Remote procedure call architectures. The components of main

program/subprogram architecture are distributed across multiple computers on a

network.

d)Object-oriented architectures.

The components of a system encapsulate data and the operations that must be

applied to manipulate the data.

Communication and coordination between components is accomplished via message passing.

e) Layered architectures.

● The basic structure of a layered architecture is illustrated in Figure. A number

of different layers are defined, each accomplishing operations that

progressively become closer to the machine instruction set.

● At the outer layer, components service user interface operations.

● At the inner layer, components perform operating system interfacing.

● Intermediate layers provide utility services and application software functions.

● Once requirements engineering uncovers the characteristics and constraints

of the system to be built, the architectural pattern (style) or combination of

patterns (styles) that best fits those characteristics and constraints can be

chosen.

Figure Layered architecture

 USER INTERFACE DESIGN

The Golden Rules

Mandel coins three golden rules:

1. Place the user in control.

2. Reduce the user‟s memory load.

3. Make the interface consistent.

These golden rules actually form the basis for a set of user interface design principles that guide

this important aspect of software design.

1. Place the user in control.

Mandel defines a number of design principles that allow the user to maintain control:

Define interaction modes in a way that does not force a user into unnecessary or undesired

actions. Provide for flexible interaction.

Allow user interaction to be interruptible and undoable.

Streamline interaction as skill levels advance and allow the interaction to be customized. Hide

technical internals from the casual user.

Design for direct interaction with objects that appear on the screen.

2. Reduce the user’s memory load.

Mandel defines design principles that enable an interface to reduce the user‟s memory load:

Reduce demand on short-term memory.

Establish meaningful defaults.

Define shortcuts that are intuitive.

The visual layout of the interface should be based on a real-world metaphor. Disclose

information in a progressive fashion.

3. Make the interface consistent.

The interface should present and acquire information in a consistent fashion. This implies that

(1) all visual information is organized according to design rules that are maintained throughout

all screen displays,

(2) input mechanisms are constrained to a limited set that is used consistently throughout the

application

(3) mechanisms for navigating from task to task are consistently defined and implemented.

Mandel defines a set of design principles that help make the interface consistent:

Allow the user to put the current task into a meaningful context. Maintain consistency across a

family of applications.

If past interactive models have created user expectations, do not make changes unless there is

a compelling reason to do so.

UNIT IV SOFTWARE TESTING AND MAINTENANCE 9

Testing – Unit testing – Black box testing– White box testing – Integration and System testing–
Regression testing – Debugging - Program analysis – Symbolic execution – Model Checking-
Case Study

Types of Software testing

Testing is the process of executing a program to find errors. To make our software perform well

it should be error-free. If testing is done successfully it will remove all the errors from the

software. In this article, we will discuss first the principles of testing and then we will discuss, the

different types of testing.

Principles of Testing

● All the tests should meet the customer’s requirements.

● To make our software testing should be performed by a third party.

● Exhaustive testing is not possible. As we need the optimal amount of testing based

on the risk assessment of the application.

● All the tests to be conducted should be planned before implementing it

● It follows the Pareto rule(80/20 rule) which states that 80% of errors come from 20%

of program components.

● Start testing with small parts and extend it to large parts.

● Types of Testing

Unit Testing – Software Testing

Unit testing is a type of software testing that focuses on individual units or components of a

software system. The purpose of unit testing is to validate that each unit of the software works

as intended and meets the requirements. Unit testing is typically performed by developers, and

it is performed early in the development process before the code is integrated and tested as a

whole system.

Unit tests are automated and are run each time the code is changed to ensure that new code

does not break existing functionality. Unit tests are designed to validate the smallest possible

unit of code, such as a function or a method, and test it in isolation from the rest of the system.

This allows developers to quickly identify and fix any issues early in the development process,

improving the overall quality of the software and reducing the time required for later testing.

Prerequisite – Types of Software Testing

Unit Testing is a software testing technique using which individual units of software i.e. group of

computer program modules, usage procedures, and operating procedures are tested to

determine whether they are suitable for use or not. It is a testing method using which every

independent module is tested to determine if there is an issue by the developer himself. It is

correlated with the functional correctness of the independent modules. Unit Testing is defined

as a type of software testing where individual components of a software are tested. Unit Testing

of the software product is carried out during the development of an application. An individual

component may be either an individual function or a procedure. Unit Testing is typically

performed by the developer. In SDLC or V Model, Unit testing is the first level of testing done

before integration testing. Unit testing is a type of testing technique that is usually performed by

developers. Although due to the reluctance of developers to test, quality assurance engineers

also do unit testing.

https://www.geeksforgeeks.org/types-software-testing/

Objective of Unit Testing:

The objective of Unit Testing is:

1. To isolate a section of code.

2. To verify the correctness of the code.

3. To test every function and procedure.

4. To fix bugs early in the development cycle and to save costs.

5. To help the developers understand the code base and enable them to make

changes quickly.

6. To help with code reuse.

Types of Unit Testing:

There are 2 types of Unit Testing: Manual, and Automated.

Workflow of Unit Testing:

Unit Testing Techniques:

 There are 3 types of Unit Testing Techniques. They are

1. Black Box Testing: This testing technique is used in covering the unit tests for input,

user interface, and output parts.

2. White Box Testing: This technique is used in testing the functional behavior of the

system by giving the input and checking the functionality output including the internal

design structure and code of the modules.

3. Gray Box Testing: This technique is used in executing the relevant test cases, test

methods, and test functions, and analyzing the code performance for the modules.

Unit Testing Tools:

Here are some commonly used Unit Testing tools:

1. Jtest

2. Junit

3. NUnit

4. EMMA

5. PHPUnit

6.

Advantages of Unit Testing:

1. Unit Testing allows developers to learn what functionality is provided by a unit and

how to use it to gain a basic understanding of the unit API.

2. Unit testing allows the programmer to refine code and make sure the module works

properly.

3. Unit testing enables testing parts of the project without waiting for others to be

completed.

4. Early Detection of Issues: Unit testing allows developers to detect and fix issues

early in the development process before they become larger and more difficult to fix.

5. Improved Code Quality: Unit testing helps to ensure that each unit of code works as

intended and meets the requirements, improving the overall quality of the software.

6. Increased Confidence: Unit testing provides developers with confidence in their

code, as they can validate that each unit of the software is functioning as expected.

7. Faster Development: Unit testing enables developers to work faster and more

efficiently, as they can validate changes to the code without having to wait for the full

system to be tested.

8. Better Documentation: Unit testing provides clear and concise documentation of the

code and its behavior, making it easier for other developers to understand and

maintain the software.

9. Facilitation of Refactoring: Unit testing enables developers to safely make changes

to the code, as they can validate that their changes do not break existing

functionality.

10. Reduced Time and Cost: Unit testing can reduce the time and cost required for

later testing, as it helps to identify and fix issues early in the development process.

Disadvantages of Unit Testing:

1. The process is time-consuming for writing the unit test cases.

2. Unit Testing will not cover all the errors in the module because there is a chance of

having errors in the modules while doing integration testing.

3. Unit Testing is not efficient for checking the errors in the UI(User Interface) part of

the module.

4. It requires more time for maintenance when the source code is changed frequently.

5. It cannot cover the non-functional testing parameters such as scalability, the

performance of the system, etc.

6. Time and Effort: Unit testing requires a significant investment of time and effort to

create and maintain the test cases, especially for complex systems.

7. Dependence on Developers: The success of unit testing depends on the developers,

who must write clear, concise, and comprehensive test cases to validate the code.

8. Difficulty in Testing Complex Units: Unit testing can be challenging when dealing with

complex units, as it can be difficult to isolate and test individual units in isolation from

the rest of the system.

9. Difficulty in Testing Interactions: Unit testing may not be sufficient for testing

interactions between units, as it only focuses on individual units.

10. Difficulty in Testing User Interfaces: Unit testing may not be suitable for testing

user interfaces, as it typically focuses on the functionality of individual units.

11. Over-reliance on Automation: Over-reliance on automated unit tests can lead to a

false sense of security, as automated tests may not uncover all possible issues or

bugs.

12. Maintenance Overhead: Unit testing requires ongoing maintenance and updates,

as the code and test cases must be kept up-to-date with changes to the software.

Integration Testing

Integration testing is the process of testing the interface between two software units or modules.

It focuses on determining the correctness of the interface. The purpose of integration testing is

to expose faults in the interaction between integrated units. Once all the modules have been

unit-tested, integration testing is performed.

Integration testing

It is a software testing technique that focuses on verifying the interactions and data exchange

between different components or modules of a software application. The goal of integration

testing is to identify any problems or bugs that arise when different components are combined

and interact with each other. Integration testing is typically performed after unit testing and

before system testing. It helps to identify and resolve integration issues early in the development

cycle, reducing the risk of more severe and costly problems later on.

Integration testing can be done by picking module by module. This can be done so that there

should be a proper sequence to be followed. And also if you don’t want to miss out on any

integration scenarios then you have to follow the proper sequence. Exposing the defects is the

major focus of the integration testing and the time of interaction between the integrated units.

Integration test approaches – There are four types of integration testing approaches. Those

approaches are the following:

1. Big-Bang Integration Testing – It is the simplest integration testing approach, where all the

modules are combined and the functionality is verified after the completion of individual module

testing. In simple words, all the modules of the system are simply put together and tested. This

approach is practicable only for very small systems. If an error is found during the integration

testing, it is very difficult to localize the error as the error may potentially belong to any of the

modules being integrated. So, debugging errors reported during Big Bang integration testing is

very expensive to fix.

Big-bang integration testing is a software testing approach in which all components or modules

of a software application are combined and tested at once. This approach is typically used when

the software components have a low degree of interdependence or when there are constraints

in the development environment that prevent testing individual components. The goal of big-

bang integration testing is to verify the overall functionality of the system and to identify any

integration problems that arise when the components are combined. While big-bang integration

testing can be useful in some situations, it can also be a high-risk approach, as the complexity

of the system and the number of interactions between components can make it difficult to

identify and diagnose problems.

Advantages:

1. It is convenient for small systems.

2. Simple and straightforward approach.

3. Can be completed quickly.

4. Does not require a lot of planning or coordination.

5. May be suitable for small systems or projects with a low degree of interdependence

between components.

Disadvantages:

1. There will be quite a lot of delay because you would have to wait for all the modules

to be integrated.

2. High-risk critical modules are not isolated and tested on priority since all modules are

tested at once.

3. Not Good for long projects.

4. High risk of integration problems that are difficult to identify and diagnose.

5. This can result in long and complex debugging and troubleshooting efforts.

6. This can lead to system downtime and increased development costs.

7. May not provide enough visibility into the interactions and data exchange between

components.

8. This can result in a lack of confidence in the system’s stability and reliability.

9. This can lead to decreased efficiency and productivity.

10. This may result in a lack of confidence in the development team.

11. This can lead to system failure and decreased user satisfaction.

2. Bottom-Up Integration Testing – In bottom-up testing, each module at lower levels are

tested with higher modules until all modules are tested. The primary purpose of this integration

testing is that each subsystem tests the interfaces among various modules making up the

subsystem. This integration testing uses test drivers to drive and pass appropriate data to the

lower-level modules.

Advantages:

● In bottom-up testing, no stubs are required.

● A principal advantage of this integration testing is that several disjoint subsystems

can be tested simultaneously.

● It is easy to create the test conditions.

● Best for applications that uses bottom up design approach.

● It is Easy to observe the test results.

Disadvantages:

● Driver modules must be produced.

● In this testing, the complexity that occurs when the system is made up of a large

number of small subsystems.

● As Far modules have been created, there is no working model can be represented.

3. Top-Down Integration Testing – Top-down integration testing technique is used in order to

simulate the behaviour of the lower-level modules that are not yet integrated. In this integration

testing, testing takes place from top to bottom. First, high-level modules are tested and then

low-level modules and finally integrating the low-level modules to a high level to ensure the

system is working as intended.

Advantages:

● Separately debugged module.

● Few or no drivers needed.

● It is more stable and accurate at the aggregate level.

● Easier isolation of interface errors.

● In this, design defects can be found in the early stages.

Disadvantages:

● Needs many Stubs.

● Modules at lower level are tested inadequately.

● It is difficult to observe the test output.

● It is difficult to stub design.

4. Mixed Integration Testing – A mixed integration testing is also called sandwiched

integration testing. A mixed integration testing follows a combination of top down and bottom-up

testing approaches. In top-down approach, testing can start only after the top-level module have

been coded and unit tested. In bottom-up approach, testing can start only after the bottom level

modules are ready. This sandwich or mixed approach overcomes this shortcoming of the top-

down and bottom-up approaches. It is also called the hybrid integration testing. also, stubs and

drivers are used in mixed integration testing.

Advantages:

● Mixed approach is useful for very large projects having several sub projects.

● This Sandwich approach overcomes this shortcoming of the top-down and bottom-up

approaches.

● Parallel test can be performed in top and bottom layer tests.

Disadvantages:

● For mixed integration testing, it requires very high cost because one part has a Top-

down approach while another part has a bottom-up approach.

● This integration testing cannot be used for smaller systems with huge

interdependence between different modules.

Applications:

1. Identify the components: Identify the individual components of your application that

need to be integrated. This could include the frontend, backend, database, and any

third-party services.

2. Create a test plan: Develop a test plan that outlines the scenarios and test cases that

need to be executed to validate the integration points between the different

components. This could include testing data flow, communication protocols, and

error handling.

3. Set up test environment: Set up a test environment that mirrors the production

environment as closely as possible. This will help ensure that the results of your

integration tests are accurate and reliable.

4. Execute the tests: Execute the tests outlined in your test plan, starting with the most

critical and complex scenarios. Be sure to log any defects or issues that you

encounter during testing.

5. Analyze the results: Analyze the results of your integration tests to identify any

defects or issues that need to be addressed. This may involve working with

developers to fix bugs or make changes to the application architecture.

6. Repeat testing: Once defects have been fixed, repeat the integration testing process

to ensure that the changes have been successful and that the application still works

as expected.

Integration Testing

Integration testing is the process of testing the interface between two software units or modules.

It focuses on determining the correctness of the interface. The purpose of integration testing is

to expose faults in the interaction between integrated units. Once all the modules have been

unit-tested, integration testing is performed.

Integration testing is a software testing technique that focuses on verifying the interactions and

data exchange between different components or modules of a software application. The goal of

integration testing is to identify any problems or bugs that arise when different components are

combined and interact with each other. Integration testing is typically performed after unit testing

and before system testing. It helps to identify and resolve integration issues early in the

development cycle, reducing the risk of more severe and costly problems later on.

Integration testing can be done by picking module by module. This can be done so that there

should be a proper sequence to be followed. And also if you don’t want to miss out on any

integration scenarios then you have to follow the proper sequence. Exposing the defects is the

major focus of the integration testing and the time of interaction between the integrated units.

Integration test approaches – There are four types of integration testing approaches. Those

approaches are the following:

 Big-Bang Integration Testing – It is the simplest integration testing approach, where all the

modules are combined and the functionality is verified after the completion of individual module

testing. In simple words, all the modules of the system are simply put together and tested. This

approach is practicable only for very small systems. If an error is found during the integration

testing, it is very difficult to localize the error as the error may potentially belong to any of the

modules being integrated. So, debugging errors reported during Big Bang integration testing is

very expensive to fix.

Big-bang integration testing is a software testing approach in which all components or modules

of a software application are combined and tested at once. This approach is typically used when

the software components have a low degree of interdependence or when there are constraints

in the development environment that prevent testing individual components. The goal of big-

bang integration testing is to verify the overall functionality of the system and to identify any

integration problems that arise when the components are combined. While big-bang integration

testing can be useful in some situations, it can also be a high-risk approach, as the complexity

of the system and the number of interactions between components can make it difficult to

identify and diagnose problems.

Advantages:

1. It is convenient for small systems.

2. Simple and straightforward approach.

3. Can be completed quickly.

4. Does not require a lot of planning or coordination.

5. May be suitable for small systems or projects with a low degree of interdependence

between components.

Disadvantages:

1. There will be quite a lot of delay because you would have to wait for all the modules

to be integrated.

2. High-risk critical modules are not isolated and tested on priority since all modules are

tested at once.

3. Not Good for long projects.

4. High risk of integration problems that are difficult to identify and diagnose.

5. This can result in long and complex debugging and troubleshooting efforts.

6. This can lead to system downtime and increased development costs.

7. May not provide enough visibility into the interactions and data exchange between

components.

8. This can result in a lack of confidence in the system’s stability and reliability.

9. This can lead to decreased efficiency and productivity.

10. This may result in a lack of confidence in the development team.

11. This can lead to system failure and decreased user satisfaction.

2. Bottom-Up Integration Testing – In bottom-up testing, each module at lower levels are

tested with higher modules until all modules are tested. The primary purpose of this integration

testing is that each subsystem tests the interfaces among various modules making up the

subsystem. This integration testing uses test drivers to drive and pass appropriate data to the

lower-level modules.

Advantages:

● In bottom-up testing, no stubs are required.

● A principal advantage of this integration testing is that several disjoint subsystems

can be tested simultaneously.

● It is easy to create the test conditions.

● Best for applications that uses bottom up design approach.

● It is Easy to observe the test results.

Disadvantages:

● Driver modules must be produced.

● In this testing, the complexity that occurs when the system is made up of a large

number of small subsystems.

● As Far modules have been created, there is no working model can be represented.

3. Top-Down Integration Testing – Top-down integration testing technique is used in order to

simulate the behaviour of the lower-level modules that are not yet integrated. In this integration

testing, testing takes place from top to bottom. First, high-level modules are tested and then

low-level modules and finally integrating the low-level modules to a high level to ensure the

system is working as intended.

Advantages:

● Separately debugged module.

● Few or no drivers needed.

● It is more stable and accurate at the aggregate level.

● Easier isolation of interface errors.

● In this, design defects can be found in the early stages.

Disadvantages:

● Needs many Stubs.

● Modules at lower level are tested inadequately.

● It is difficult to observe the test output.

● It is difficult to stub design.

4. Mixed Integration Testing – A mixed integration testing is also called sandwiched

integration testing. A mixed integration testing follows a combination of top down and

bottom-up testing approaches. In top-down approach, testing can start only after the top-

level module have been coded and unit tested. In bottom-up approach, testing can start

only after the bottom level modules are ready. This sandwich or mixed approach

overcomes this shortcoming of the top-down and bottom-up approaches. It is also called

the hybrid integration testing. also, stubs and drivers are used in mixed integration

testing.

Advantages:

● Mixed approach is useful for very large projects having several sub projects.

● This Sandwich approach overcomes this shortcoming of the top-down and bottom-up

approaches.

● Parallel test can be performed in top and bottom layer tests.

Disadvantages:

● For mixed integration testing, it requires very high cost because one part has a Top-

down approach while another part has a bottom-up approach.

● This integration testing cannot be used for smaller systems with huge

interdependence between different modules.

Applications:

1. Identify the components: Identify the individual components of your application that

need to be integrated. This could include the frontend, backend, database, and any

third-party services.

2. Create a test plan: Develop a test plan that outlines the scenarios and test cases that

need to be executed to validate the integration points between the different

components. This could include testing data flow, communication protocols, and

error handling.

3. Set up test environment: Set up a test environment that mirrors the production

environment as closely as possible. This will help ensure that the results of your

integration tests are accurate and reliable.

4. Execute the tests: Execute the tests outlined in your test plan, starting with the most

critical and complex scenarios. Be sure to log any defects or issues that you

encounter during testing.

5. Analyze the results: Analyze the results of your integration tests to identify any

defects or issues that need to be addressed. This may involve working with

developers to fix bugs or make changes to the application architecture.

6. Repeat testing: Once defects have been fixed, repeat the integration testing process

to ensure that the changes have been successful and that the application still works

as expected.

System Testing

NTRODUCTION:

System testing is a type of software testing that evaluates the overall functionality and

performance of a complete and fully integrated software solution. It tests if the system meets the

specified requirements and if it is suitable for delivery to the end-users. This type of testing is

performed after the integration testing and before the acceptance testing.

System Testing is a type of software testing that is performed on a complete integrated system

to evaluate the compliance of the system with the corresponding requirements. In system

testing, integration testing passed components are taken as input. The goal of integration

testing is to detect any irregularity between the units that are integrated together. System testing

detects defects within both the integrated units and the whole system. The result of system

testing is the observed behavior of a component or a system when it is tested. System Testing

is carried out on the whole system in the context of either system requirement specifications or

functional requirement specifications or in the context of both. System testing tests the design

and behavior of the system and also the expectations of the customer. It is performed to test the

https://www.geeksforgeeks.org/software-testing-basics/

system beyond the bounds mentioned in the software requirements specification (SRS). System

Testing is basically performed by a testing team that is independent of the development team

that helps to test the quality of the system impartial. It has both functional and non-functional

testing. System Testing is a black-box testing. System Testing is performed after the integration

testing and before the acceptance testing.

System Testing Process: System Testing is performed in the following steps:

● Test Environment Setup: Create testing environment for the better quality testing.

● Create Test Case: Generate test case for the testing process.

● Create Test Data: Generate the data that is to be tested.

● Execute Test Case: After the generation of the test case and the test data, test cases

are executed.

● Defect Reporting: Defects in the system are detected.

● Regression Testing: It is carried out to test the side effects of the testing process.

● Log Defects: Defects are fixed in this step.

● Retest: If the test is not successful then again test is performed.

https://www.geeksforgeeks.org/software-engineering-quality-characteristics-of-a-good-srs/

Types of System Testing:

● Performance Testing: Performance Testing is a type of software testing that is

carried out to test the speed, scalability, stability and reliability of the software

product or application.

● Load Testing: Load Testing is a type of software Testing which is carried out to

determine the behavior of a system or software product under extreme load.

● Stress Testing: Stress Testing is a type of software testing performed to check the

robustness of the system under the varying loads.

● Scalability Testing: Scalability Testing is a type of software testing which is carried

out to check the performance of a software application or system in terms of its

capability to scale up or scale down the number of user request load.

Tools used for System Testing :

1. JMeter

2. Gallen Framework

3. Selenium

Here are a few common tools used for System Testing:

1. HP Quality Center/ALM

2. IBM Rational Quality Manager

3. Microsoft Test Manager

4. Selenium

5. Appium

6. LoadRunner

7. Gatling

8. JMeter

9. Apache JServ

10. SoapUI

Note: The choice of tool depends on various factors like the technology used, the

size of the project, the budget, and the testing requirements.

Advantages of System Testing :

● The testers do not require more knowledge of programming to carry out this testing.

● It will test the entire product or software so that we will easily detect the errors or

defects which cannot be identified during the unit testing and integration testing.

● The testing environment is similar to that of the real time production or business

environment.

● It checks the entire functionality of the system with different test scripts and also it

covers the technical and business requirements of clients.

● After this testing, the product will almost cover all the possible bugs or errors and

hence the development team will confidently go ahead with acceptance testing.

re are some advantages of System Testing:

● Verifies the overall functionality of the system.

● Detects and identifies system-level problems early in the development cycle.

● Helps to validate the requirements and ensure the system meets the user needs.

● Improves system reliability and quality.

● Facilitates collaboration and communication between development and testing

teams.

● Enhances the overall performance of the system.

● Increases user confidence and reduces risks.

● Facilitates early detection and resolution of bugs and defects.

● Supports the identification of system-level dependencies and inter-module

interactions.

● Improves the system’s maintainability and scalability.

Disadvantages of System Testing :

● This testing is time consuming process than another testing techniques since it

checks the entire product or software.

● The cost for the testing will be high since it covers the testing of entire software.

● It needs good debugging tool otherwise the hidden errors will not be found.

Here are some disadvantages of System Testing:

● Can be time-consuming and expensive.

● Requires adequate resources and infrastructure.

● Can be complex and challenging, especially for large and complex systems.

● Dependent on the quality of requirements and design documents.

● Limited visibility into the internal workings of the system.

● Can be impacted by external factors like hardware and network configurations.

● Requires proper planning, coordination, and execution.

● Can be impacted by changes made during development.

● Requires specialized skills and expertise.

● May require multiple test cycles to achieve desired results.

Regression Testing

Regression Testing is the process of testing the modified parts of the code and the parts that

might get affected due to the modifications to ensure that no new errors have been introduced in

the software after the modifications have been made. Regression means the return of

something and in the software field, it refers to the return of a bug.

When to do regression testing?

● When new functionality is added to the system and the code has been modified to

absorb and integrate that functionality with the existing code.

● When some defect has been identified in the software and the code is debugged to

fix it.

● When the code is modified to optimize its working.

Process of Regression testing

Firstly, whenever we make some changes to the source code for any reason like adding new

functionality, optimization, etc. then our program when executed fails in the previously designed

test suite for obvious reasons. After the failure, the source code is debugged to identify the bugs

in the program. After identification of the bugs in the source code, appropriate modifications are

made. Then appropriate test cases are selected from the already existing test suite which

covers all the modified and affected parts of the source code. We can add new test cases if

required. In the end, regression testing is performed using the selected test cases.

Techniques for the selection of Test cases for Regression Testing

● Select all test cases: In this technique, all the test cases are selected from the

already existing test suite. It is the simplest and safest technique but not very

efficient.

● Select test cases randomly: In this technique, test cases are selected randomly from

the existing test suite, but it is only useful if all the test cases are equally good in their

fault detection capability which is very rare. Hence, it is not used in most of the

cases.

● Select modification traversing test cases: In this technique, only those test cases are

selected that cover and test the modified portions of the source code and the parts

that are affected by these modifications.

● Select higher priority test cases: In this technique, priority codes are assigned to

each test case of the test suite based upon their bug detection capability, customer

requirements, etc. After assigning the priority codes, test cases with the highest

priorities are selected for the process of regression testing. The test case with the

highest priority has the highest rank. For example, a test case with priority code 2 is

less important than a test case with priority code 1.

●

Tools for Regression testing

In regression testing, we generally select the test cases from the existing test suite itself and

hence, we need not compute their expected output, and it can be easily automated due to this

reason. Automating the process of regression testing will be very effective and time-saving. The

most commonly used tools for regression testing are:

● Selenium

● WATIR (Web Application Testing In Ruby)

● QTP (Quick Test Professional)

● RFT (Rational Functional Tester)

● Winrunner

● Silktest

Advantages of Regression Testing

● It ensures that no new bugs have been introduced after adding new functionalities to

the system.

https://www.geeksforgeeks.org/selenium-basics-components-features-uses-and-limitations/

● As most of the test cases used in Regression Testing are selected from the existing

test suite, and we already know their expected outputs. Hence, it can be easily

automated by the automated tools.

● It helps to maintain the quality of the source code.

Disadvantages of Regression Testing

● It can be time and resource-consuming if automated tools are not used.

● It is required even after very small changes in the code.

What is Debugging in Software Engineering?

Debugging is the process of identifying and resolving errors, or bugs, in a software system. It is

an important aspect of software engineering because bugs can cause a software system to

malfunction, and can lead to poor performance or incorrect results. Debugging can be a time-

consuming and complex task, but it is essential for ensuring that a software system is

functioning correctly.

What is Debugging ?

In the context of software engineering, debugging is the process of fixing a bug in the software.

When there’s a problem with software, programmers analyze the code to figure out why things

aren’t working correctly. They use different debugging tools to carefully go through the code,

step by step, find the issue, and make the necessary corrections.

Why is it called debugging?

The term “debugging” originated from an incident involving Grace Hopper in the 1940s when a

moth caused a malfunction in the Mark II computer at Harvard University. The term stuck and is

now commonly used to describe the process of finding and fixing errors in computer programs.

In simpler terms, debugging got its name from removing a moth that caused a computer

problem.

Methods and Techniques Used in Debugging

There are several common methods and techniques used in debugging, including:

1. Code Inspection: This involves manually reviewing the source code of a software

system to identify potential bugs or errors.

2. Debugging Tools: There are various tools available for debugging such as

debuggers, trace tools, and profilers that can be used to identify and resolve bugs.

3. Unit Testing: This involves testing individual units or components of a software

system to identify bugs or errors.

4. Integration Testing: This involves testing the interactions between different

components of a software system to identify bugs or errors.

5. System Testing: This involves testing the entire software system to identify bugs or

errors.

6. Monitoring: This involves monitoring a software system for unusual behavior or

performance issues that can indicate the presence of bugs or errors.

7. Logging: This involves recording events and messages related to the software

system, which can be used to identify bugs or errors.

Process of Debugging

The steps involved in debugging are:

● Problem identification and report preparation.

● Assigning the report to the software engineer defect to verify that it is genuine.

● Defect Analysis using modeling, documentation, finding and testing candidate flaws,

etc.

● Defect Resolution by making required changes to the system.

● Validation of corrections.

The debugging process will always have one of two outcomes :

1. The cause will be found and corrected.

2. The cause will not be found.

Why is debugging important?

Fixing mistakes in computer programming, known as bugs or errors, is necessary because

programming deals with abstract ideas and concepts. Computers understand machine

language, but we use programming languages to make it easier for people to talk to computers.

Software has many layers of abstraction, meaning different parts must work together for an

application to function properly. When errors happen, finding and fixing them can be tricky.

That’s where debugging tools and strategies come in handy. They help solve problems faster,

making developers more efficient. This not only improves the quality of the software but also

makes the experience better for the people using it. In simple terms, debugging is important

because it makes sure the software works well and people have a good time using it.

Debugging Approaches/Strategies

1. Brute Force: Study the system for a longer duration to understand the system. It

helps the debugger to construct different representations of systems to be debugged

depending on the need. A study of the system is also done actively to find recent

changes made to the software.

2. Backtracking: Backward analysis of the problem which involves tracing the program

backward from the location of the failure message to identify the region of faulty

code. A detailed study of the region is conducted to find the cause of defects.

3. Forward analysis of the program involves tracing the program forwards using

breakpoints or print statements at different points in the program and studying the

results. The region where the wrong outputs are obtained is the region that needs to

be focused on to find the defect.

4. Using A debugging experience with the software debug the software with similar

problems in nature. The success of this approach depends on the expertise of the

debugger.

5. Cause elimination: it introduces the concept of binary partitioning. Data related to the

error occurrence are organized to isolate potential causes.

6. Static analysis: Analyzing the code without executing it to identify potential bugs or

errors. This approach involves analyzing code syntax, data flow, and control flow.

7. Dynamic analysis: Executing the code and analyzing its behavior at runtime to

identify errors or bugs. This approach involves techniques like runtime debugging

and profiling.

8. Collaborative debugging: Involves multiple developers working together to debug a

system. This approach is helpful in situations where multiple modules or components

are involved, and the root cause of the error is not clear.

9. Logging and Tracing: Using logging and tracing tools to identify the sequence of events

leading up to the error. This approach involves collecting and analyzing logs and traces

generated by the system during its execution.

10. Automated Debugging: The use of automated tools and techniques to assist in the

debugging process. These tools can include static and dynamic analysis tools, as well

as tools that use machine learning and artificial intelligence to identify errors and suggest

fixes.

Examples of error during debugging

Some common example of error during debugging are:

● Syntax error

● Logical error

● Runtime error

● Stack overflow

● Index Out of Bound Errors

● Infinite loops

● Concurrency Issues

● I/O errors

● Environment Dependencies

● Integration Errors

● Reference error

● Type error

Debugging Tools

A debugging tool is a computer program that is used to test and debug other programs. A lot of

public domain software like gdb and dbx are available for debugging. They offer console-based

command-line interfaces. Examples of automated debugging tools include code-based tracers,

profilers, interpreters, etc. Some of the widely used debuggers are:

● Radare2

● WinDbg

● Valgrind

Difference Between Debugging and Testing

Debugging is different from testing. Testing focuses on finding bugs, errors, etc whereas

debugging starts after a bug has been identified in the software. Testing is used to ensure that

the program is correct and it was supposed to do with a certain minimum success rate. Testing

can be manual or automated. There are several different types of testing unit testing, integration

testing, alpha, and beta testing, etc.

Debugging requires a lot of knowledge, skills, and expertise. It can be supported by some

automated tools available but is more of a manual process as every bug is different and

requires a different technique, unlike a pre-defined testing mechanism.

Advantages of Debugging

Several advantages of debugging in software engineering:

1. Improved system quality: By identifying and resolving bugs, a software system can

be made more reliable and efficient, resulting in improved overall quality.

2. Reduced system downtime: By identifying and resolving bugs, a software system

can be made more stable and less likely to experience downtime, which can result in

improved availability for users.

https://en.wikipedia.org/wiki/Radare2
https://en.wikipedia.org/wiki/WinDbg
https://en.wikipedia.org/wiki/Valgrind
https://www.geeksforgeeks.org/software-testing-basics/

3. Increased user satisfaction: By identifying and resolving bugs, a software system can

be made more user-friendly and better able to meet the needs of users, which can

result in increased satisfaction.

4. Reduced development costs: Identifying and resolving bugs early in the development

process, can save time and resources that would otherwise be spent on fixing bugs

later in the development process or after the system has been deployed.

5. Increased security: By identifying and resolving bugs that could be exploited by

attackers, a software system can be made more secure, reducing the risk of security

breaches.

6. Facilitates change: With debugging, it becomes easy to make changes to the

software as it becomes easy to identify and fix bugs that would have been caused by

the changes.

7. Better understanding of the system: Debugging can help developers gain a better

understanding of how a software system works, and how different components of the

system interact with one another.

8. Facilitates testing: By identifying and resolving bugs, it makes it easier to test the

software and ensure that it meets the requirements and specifications.

In summary, debugging is an important aspect of software engineering as it helps to improve

system quality, reduce system downtime, increase user satisfaction, reduce development costs,

increase security, facilitate change, a better understanding of the system, and facilitate testing.

Disadvantages of Debugging

While debugging is an important aspect of software engineering, there are also some

disadvantages to consider:

1. Time-consuming: Debugging can be a time-consuming process, especially if the bug

is difficult to find or reproduce. This can cause delays in the development process

and add to the overall cost of the project.

2. Requires specialized skills: Debugging can be a complex task that requires

specialized skills and knowledge. This can be a challenge for developers who are not

familiar with the tools and techniques used in debugging.

3. Can be difficult to reproduce: Some bugs may be difficult to reproduce, which can

make it challenging to identify and resolve them.

4. Can be difficult to diagnose: Some bugs may be caused by interactions between

different components of a software system, which can make it challenging to identify

the root cause of the problem.

5. Can be difficult to fix: Some bugs may be caused by fundamental design flaws or

architecture issues, which can be difficult or impossible to fix without significant

changes to the software system.

6. Limited insight: In some cases, debugging tools can only provide limited insight into

the problem and may not provide enough information to identify the root cause of the

problem.

7. Can be expensive: Debugging can be an expensive process, especially if it requires

additional resources such as specialized debugging tools or additional development

time

Program Analysis Tools in Software Engineering

The goal of developing software that is reliable, safe and effective is crucial in the dynamic and

always changing field of software development. Programme Analysis Tools are a developer’s

greatest support on this trip, giving them invaluable knowledge about the inner workings of their

code. In this article, we’ll learn about it’s importance and classification.

What is Program Analysis Tool?

Program Analysis Tool is an automated tool whose input is the source code or the executable

code of a program and the output is the observation of characteristics of the program. It gives

various characteristics of the program such as its size, complexity, adequacy of commenting,

adherence to programming standards and many other characteristics. These tools are essential

to software engineering because they help programmers comprehend, improve and maintain

software systems over the course of the whole development life cycle.

Importance of Program Analysis Tools

1. Finding faults and Security Vulnerabilities in the Code: Automatic programme

analysis tools can find and highlight possible faults, security flaws and bugs in the

code. This lowers the possibility that bugs will get it into production by assisting

developers in identifying problems early in the process.

2. Memory Leak Detection: Certain tools are designed specifically to find memory leaks

and inefficiencies. By doing so, developers may make sure that their software

doesn’t gradually use up too much memory.

3. Vulnerability Detection: Potential vulnerabilities like buffer overflows, injection attacks

or other security flaws can be found using programme analysis tools, particularly

those that are security-focused. For the development of reliable and secure software,

this is essential.

4. Dependency analysis: By examining the dependencies among various system

components, tools can assist developers in comprehending and controlling the

connections between modules. This is necessary in order to make well-informed

decisions during refactoring.

5. Automated Testing Support: To automate testing procedures, CI/CD pipelines

frequently combine programme analysis tools. Only well-tested, high-quality code is

released into production thanks to this integration, helping in identifying problems

early in the development cycle.

Classification of Program Analysis Tools

Program Analysis Tools are classified into two categories:

1. Static Program Analysis Tools

Static Program Analysis Tool is such a program analysis tool that evaluates and computes

various characteristics of a software product without executing it. Normally, static program

analysis tools analyze some structural representation of a program to reach a certain analytical

conclusion. Basically some structural properties are analyzed using static program analysis

tools. The structural properties that are usually analyzed are:

1. Whether the coding standards have been fulfilled or not.

2. Some programming errors such as uninitialized variables.

3. Mismatch between actual and formal parameters.

4. Variables that are declared but never used.

Code walkthroughs and code inspections are considered as static analysis methods but static

program analysis tool is used to designate automated analysis tools. Hence, a compiler can be

considered as a static program analysis tool.

2. Dynamic Program Analysis Tools

Dynamic Program Analysis Tool is such type of program analysis tool that require the program

to be executed and its actual behavior to be observed. A dynamic program analyzer basically

implements the code. It adds additional statements in the source code to collect the traces of

program execution. When the code is executed, it allows us to observe the behavior of the

software for different test cases. Once the software is tested and its behavior is observed, the

dynamic program analysis tool performs a post execution analysis and produces reports which

describe the structural coverage that has been achieved by the complete testing process for the

program.

For example, the post execution dynamic analysis report may provide data on extent statement,

branch and path coverage achieved. The results of dynamic program analysis tools are in the

form of a histogram or a pie chart. It describes the structural coverage obtained for different

modules of the program. The output of a dynamic program analysis tool can be stored and

printed easily and provides evidence that complete testing has been done. The result of

dynamic analysis is the extent of testing performed as white box testing. If the testing result is

not satisfactory then more test cases are designed and added to the test scenario. Also

dynamic analysis helps in elimination of redundant test cases.

Master Software Testing and Automation in an efficient and time-bound manner by mentors with

real-time industry experience. Join our Software Automation Course and embark on an exciting

journey, mastering the skill set with ease!

Symbolic Execution

What is Symbolic Execution?

Symbolic execution is a software testing technique that is useful to aid the generation of test

data and in proving the program quality.

Steps to use Symbolic Execution:

 The execution requires a selection of paths that are exercised by a set of data values. A

program, which is executed using actual data, results in the output of a series of values.

 In symbolic execution, the data is replaced by symbolic values with set of expressions,

one expression per output variable.

 The common approach for symbolic execution is to perform an analysis of the program,

resulting in the creation of a flow graph.

 The flowgraph identifies the decision points and the assignments associated with each

flow. By traversing the flow graph from an entry point, a list of assignment statements

and branch predicates is produced.

Issues with Symbolic Execution:

 Symbolic execution cannot proceed if the number of iterations in the loop is known.

 The second issue is the invocation of any out-of-line code or module calls.

 Symbolic execution cannot be used with arrays.

 The symbolic execution cannot identify of infeasible paths.

Symbolic Execution Application:

 Path domain checking

 Test Data generation

https://www.geeksforgeeks.org/courses/complete-guide-to-software-testing-automation?utm_source=geeksforgeeks&utm_medium=article_bottom_text&utm_campaign=courses

 Partition analysis

 Symbolic debugging

Symbolic Model Checking

What is Symbolic Model Checking?

Symbolic model checking is a conventional technique utilized in the field of software engineering

and the hypothesis of calculation to confirm the rightness of equipment and programming

situations. The methodology includes addressing the framework under examination as a

numerical model, normally as a limited state machine or progress framework, and afterward

utilizing robotized calculations to dissect the model and check for blunders or properties.

The procedure is designated “emblematic symbolic” in light of the fact that it utilizes

representative control strategies, for example, Paired Choice Outlines (BDDs) and Satisfiability

Modulo Speculations (SMT), to proficiently deal with enormous and complex state spaces. The

emblematic model really takes a look at works by addressing the framework’s state space as a

bunch of sensible recipes, and afterward utilizing computerized hypotheses demonstrating

devices to reason about these equations.

Attributes of Symbolic Model Checking

Symbolic model checking is a strong procedure for confirming the rightness of equipment and

programming situation, and it has a few qualities that make it a viable device for formal

confirmation:

● Emblematic control: Symbolic model checking utilizes emblematic control methods,

for example, Twofold Choice Charts (BDDs) and Satisfiability Modulo Speculations

(SMT), to address and control enormous and complex state spaces. These methods

can fundamentally lessen the computational intricacy of confirmation issues, making

it conceivable to actually take a look at frameworks with billions of potential states.

● Robotization: symbolic model checking is a completely computerized method that

requires practically zero human intercession. When the framework under

examination and its determination are encoded in a reasonable conventional

language, the confirmation cycle can be performed naturally utilizing a model really

looking at the device.

https://www.geeksforgeeks.org/software-engineering/

● Culmination: symbolic model checking can give total confirmation, implying that it

can really take a look at all potential conditions of a framework and check that the

framework fulfills its determination.

● Adaptability: Emblematic model checking scales well with framework size, making it

appropriate for confirming enormous and complex frameworks. It can deal with

frameworks with many cooperating parts, complex information designs, and

simultaneousness.

Support for different symbolic models really looks at upholds various formalisms for framework

detail, including transient rationales, automata, and other conventional dialects. This adaptability

makes it conceivable to determine and confirm a great many frameworks.

● Broadly utilized: symbolic model checking is a deeply grounded procedure that has

been generally utilized in scholarly world and industry to confirm security basic

frameworks, including airplane control frameworks, rail route frameworks, and clinical

gadgets.

By and large, the symbolic model really looking at offers a strong and successful way to deal

with formal check, giving a serious level of computerization and versatility, while supporting

different formalisms for framework detail.

Methods Associated with Symbolic Model Checking

Symbolic model checking includes a few methods that are utilized to emblematically address

and control the framework under investigation. Here are a portion of the key strategies utilized in

emblematic model checking:

● Emblematic portrayal: The framework under investigation is addressed

emblematically utilizing numerical designs, for example, Boolean equations, Paired

Choice Outlines (BDDs), and propositional rationale. This permits the framework to

be dissected all the more effectively by staying away from unequivocal list of states.

● Model development: A model of the framework under investigation is built utilizing

formal strategies, for example, automata, Petri nets, or change frameworks. The

https://www.geeksforgeeks.org/theory-of-computation-automata-tutorials/

model is then changed into an emblematic portrayal utilizing strategies, for example,

BDDs or other choice graphs.

● State-space investigation: symbolic model checking investigates the state space of

the framework under examination to confirm in the event that it fulfills a given detail.

State-space investigation methods include utilizing calculations that cross the state

space of the framework and check assuming the determination is fulfilled.

● Choice strategies: symbolic model checking frequently involves choice techniques

for satisfiability modulo speculations (SMT) or satisfiability (SAT) issues to check

regardless of whether a bunch of consistent recipes is satisfiable. This assists with

distinguishing counterexamples and check the accuracy of the framework.

● Property detail: The determination that the framework needs to fulfill is regularly

indicated by utilizing a transient rationale, like Straight Worldly Rationale (LTL) or

Calculation Tree Rationale (CTL). These rationales take into consideration the

declaration of transient connections between framework ways of behaving.

● Deliberation: Symbolic model checking might utilize reflection methods to lessen the

intricacy of the framework under examination, for example, by eliminating unimportant

subtleties or amassing comparative states. This can assist with making the confirmation

cycle more proficient.

https://www.geeksforgeeks.org/2-satisfiability-2-sat-problem/

UNIT V PROJECT MANAGEMENT 9
Software Project Management- Software Configuration Management - Project
Scheduling- DevOps: Motivation-Cloud as a platform-Operations- Deployment
Pipeline:Overall Architecture Building and Testing-Deployment- Tools- Case Study
Software Project Management (SPM) – Software Engineering

Software Project Management (SPM) is a proper way of planning and leading software
projects. It is a part of project management in which software projects are planned,
implemented, monitored, and controlled. This article focuses on discussing Software
Project Management (SPM).

Need for Software Project Management

Software is a non-physical product. Software development is a new stream in business
and there is very little experience in building software products. Most of the software
products are made to fit clients’ requirements. The most important is that basic
technology changes and advances so frequently and rapidly that the experience of one
product may not be applied to the other one. Such types of business and environmental
constraints increase risk in software development hence it is essential to manage
software projects efficiently. It is necessary for an organization to deliver quality
products, keep the cost within the client’s budget constraint, and deliver the project as
per schedule. Hence, in order, software project management is necessary to incorporate
user requirements along with budget and time constraints.

Types of Management in SPM

1. Conflict Management

Conflict management is the process to restrict the negative features of conflict while
increasing the positive features of conflict. The goal of conflict management is to
improve learning and group results including efficacy or performance in an
organizational setting. Properly managed conflict can enhance group results.

2. Risk Management

Risk management is the analysis and identification of risks that is followed by
synchronized and economical implementation of resources to minimize, operate and
control the possibility or effect of unfortunate events or to maximize the realization of
opportunities.

3. Requirement Management

It is the process of analyzing, prioritizing, tracking, and documenting requirements and
then supervising change and communicating to pertinent stakeholders. It is a continuous
process during a project.

4. Change Management

Change management is a systematic approach to dealing with the transition or
transformation of an organization’s goals, processes, or technologies. The purpose of
change management is to execute strategies for effecting change, controlling change,
and helping people to adapt to change.

5. Software Configuration Management

Software configuration management is the process of controlling and tracking changes
in the software, part of the larger cross-disciplinary field of configuration management.
Software configuration management includes revision control and the inauguration of
baselines.

6. Release Management

Release Management is the task of planning, controlling, and scheduling the built-in
deploying releases. Release management ensures that the organization delivers new and
enhanced services required by the customer while protecting the integrity of existing
services.

Aspects of Software Project Management
The list of focus areas it can tackle and the broad upsides of Software Project
Management is:

1. Planning

The software project manager lays out the complete project’s blueprint. The project plan
will outline the scope, resources, timelines, techniques, strategy, communication,
testing, and maintenance steps. SPM can aid greatly here.

2. Leading

A software project manager brings together and leads a team of engineers, strategists,
programmers, designers, and data scientists. Leading a team necessitates exceptional
communication, interpersonal, and leadership abilities. One can only hope to do this
effectively if one sticks with the core SPM principles.

3. Execution

SPM comes to the rescue here also as the person in charge of software projects (if well
versed with SPM/Agile methodologies) will ensure that each stage of the project is
completed successfully. measuring progress, monitoring to check how teams function,
and generating status reports are all part of this process.

4. Time Management

https://www.geeksforgeeks.org/software-engineering-system-configuration-management/
https://www.geeksforgeeks.org/software-engineering-agile-software-development/

Abiding by a timeline is crucial to completing deliverables successfully. This is
especially difficult when managing software projects because changes to the original
project charter are unavoidable over time. To assure progress in the face of blockages or
changes, software project managers ought to be specialists in managing risk and
emergency preparedness. This Risk Mitigation and
management is one of the core tenets of the philosophy of SPM.

5. Budget

Software project managers, like conventional project managers, are responsible for
generating a project budget and adhering to it as closely as feasible, regulating
spending, and reassigning funds as needed. SPM teaches us how to effectively manage
the monetary aspect of projects to avoid running into a financial crunch later on in the
project.

6. Maintenance

Software project management emphasizes continuous product testing to find and repair
defects early, tailor the end product to the needs of the client, and keep the project on
track. The software project manager ensures that the product is thoroughly tested,
analyzed, and adjusted as needed. Another point in favor of SPM.

https://www.geeksforgeeks.org/short-note-on-risk-assessment-and-risk-mitigation/
https://www.geeksforgeeks.org/short-note-on-risk-assessment-and-risk-mitigation/

Downsides of Software Project Management
Numerous issues can develop if a Software project manager lacks the necessary expertise or
knowledge. Software Project management has several drawbacks, including resource loss,
scheduling difficulty, data protection concerns, and interpersonal conflicts between
Developers/Engineers/Stakeholders. Furthermore, outsourcing work or recruiting additional
personnel to complete the project may result in hefty costs for one’s company.

1. Costs are High

Consider spending money on various kinds of project management tools, software, & services if
ones engage in Software Project Management strategies. These initiatives can be expensive
and time-consuming to put in place. Because your team will be using them as well, they may
require training. One may need to recruit subject-matter experts or specialists to assist with a
project, depending on the circumstances. Stakeholders will frequently press for the inclusion of
features that were not originally envisioned. All of these factors can quickly drive up a project’s
cost.

2. Complexity will be increased

Software Project management is a multi-stage, complex process. Unfortunately, some
specialists might have a propensity to overcomplicate everything, which can lead to confusion
among teams and lead to delays in project completion. Their expressions are very strong and
specific in their ideas, resulting in a difficult work atmosphere. Projects having a larger scope
are typically more arduous to complete, especially if there isn’t a dedicated team committed
completely to the project. Members of cross-functional teams may lag far behind their daily
tasks, adding to the overall complexity of the project being worked on.

3. Overhead in Communication

Recruits enter your organization when we hire software project management personnel. This
provides a steady flow of communication that may or may not match a company’s culture. As a
result, it is advised that you maintain your crew as
small as feasible. The communication overhead tends to skyrocket when a team becomes large
enough. When a large team is needed for a project, it’s critical to identify software project
managers who can conduct effective communication with a variety of people.

4. Lack of Originality

Software Project managers can sometimes provide little or no space for creativity. Team leaders
either place an excessive amount of emphasis on management processes or impose hard
deadlines on their employees, requiring them to develop and operate code within stringent
guidelines. This can stifle innovative thought and innovation that could be beneficial to the
project. When it comes to Software project management, knowing when to encourage creativity
and when to stick to the project plan is crucial. Without Software project management
personnel, an organization can perhaps build and ship code more quickly. However, employing
a trained specialist to handle these areas, on the other hand, can open up new doors and help

the organization achieve its objectives more
quickly and more thoroughly.

System configuration management – Software Engineering
Whenever software is built, there is always scope for improvement and those improvements
bring picture changes. Changes may be required to modify or update any existing solution or to
create a new solution for a problem. Requirements keep on changing daily so we need to keep
on upgrading our systems based on the current requirements and needs to meet desired
outputs. Changes should be analyzed before they are made to the existing system, recorded
before they are implemented, reported to have details of before and after, and controlled in a
manner that will improve quality and reduce error. This is where the need for System
Configuration Management comes. System Configuration Management (SCM) is an
arrangement of exercises that controls change by recognizing the items for change, setting up
connections between those things, making/characterizing instruments for overseeing diverse
variants, controlling the changes being executed in the current framework, inspecting and
revealing/reporting on the changes made. It is essential to control the changes because if the
changes are not checked legitimately then they may wind up undermining a well-run
programming. In this way, SCM is a fundamental piece of all project management activities.

Processes involved in SCM – Configuration management provides a disciplined environment
for smooth control of work products. It involves the following activities:

1. Identification and Establishment – Identifying the configuration items from
products that compose baselines at given points in time (a baseline is a set of
mutually consistent Configuration Items, which has been formally reviewed and
agreed upon, and serves as the basis of further development). Establishing
relationships among items, creating a mechanism to manage multiple levels of
control and procedure for the change management system.

2. Version control – Creating versions/specifications of the existing product to build
new products with the help of the SCM system. A description of the version is given
below:

1. Suppose after some changes, the version of the configuration object changes from
1.0 to 1.1. Minor corrections and changes result in versions 1.1.1 and 1.1.2, which is
followed by a major update that is object 1.2. The development of object 1.0
continues through 1.3 and 1.4, but finally, a noteworthy change to the object results
in a new evolutionary path, version 2.0. Both versions are currently supported.

2. Change control – Controlling changes to Configuration items (CI). The change
control process is explained in Figure below:

A change request (CR) is submitted and evaluated to assess technical merit, potential side
effects, the overall impact on other configuration objects and system functions, and the
projected cost of the change. The results of the evaluation are presented as a change report,
which is used by a change control board (CCB) —a person or group who makes a final decision
on the status and priority of the change. An engineering change Request (ECR) is generated for
each approved change. Also, CCB notifies the developer in case the change is rejected with
proper reason. The ECR describes the change to be made, the constraints that must be
respected, and the criteria for review and audit. The object to be changed is “checked out” of the
project database, the change is made, and then the object is tested again. The object is then
“checked in” to the database and appropriate version control mechanisms are used to create
the next version of the software.

1. Configuration auditing – A software configuration audit complements the formal
technical review of the process and product. It focuses on the technical correctness
of the configuration object that has been modified. The audit confirms the
completeness, correctness, and consistency of items in the SCM system and tracks
action items from the audit to closure.

2. Reporting – Providing accurate status and current configuration data to developers,
testers, end users, customers, and stakeholders through admin guides, user guides,
FAQs, Release notes, Memos, Installation Guide, Configuration guides, etc.

Importance of Software Configuration Management

1. Effective Bug Tracking: Linking code modifications to issues that have been
reported, makes bug tracking more effective.

2. Continuous Deployment and Integration: SCM combines with continuous processes
to automate deployment and testing, resulting in more dependable and timely
software delivery.

3. Risk management: SCM lowers the chance of introducing critical flaws by assisting
in the early detection and correction of problems.

4. Support for Big Projects: Source Code Control (SCM) offers an orderly method to
handle code modifications for big projects, fostering a well-organized development
process.

5. Reproducibility: By recording precise versions of code, libraries, and dependencies,
source code versioning (SCM) makes builds repeatable.

6. Parallel Development: SCM facilitates parallel development by enabling several
developers to collaborate on various branches at once.

Why need for System configuration management?

1. Replicability: Software version control (SCM) makes ensures that a software
system can be replicated at any stage of its development. This is necessary for
testing, debugging, and upholding consistent environments in production,
testing, and development.

2. Identification of Configuration: Source code, documentation, and executable
files are examples of configuration elements that SCM helps in locating and
labeling. The management of a system’s constituent parts and their
interactions depend on this identification.

3. Effective Process of Development: By automating monotonous processes like
managing dependencies, merging changes, and resolving disputes, SCM
simplifies the development process. Error risk is decreased and efficiency is
increased because of this automation.

Key objectives of SCM

1. Control the evolution of software systems: SCM helps to ensure that changes
to a software system are properly planned, tested, and integrated into the final
product.

2. Enable collaboration and coordination: SCM helps teams to collaborate and
coordinate their work, ensuring that changes are properly integrated and that
everyone is working from the same version of the software system.

3. Provide version control: SCM provides version control for software systems,
enabling teams to manage and track different versions of the system and to
revert to earlier versions if necessary.

4. Facilitate replication and distribution: SCM helps to ensure that software
systems can be easily replicated and distributed to other environments, such
as test, production, and customer sites.

5. SCM is a critical component of software development, and effective SCM
practices can help to improve the quality and reliability of software systems,
as well as increase efficiency and reduce the risk of errors.

The main advantages of SCM

1. Improved productivity and efficiency by reducing the time and effort required
to manage software changes.

2. Reduced risk of errors and defects by ensuring that all changes were properly
tested and validated.

https://www.geeksforgeeks.org/what-is-software-development/?ref=lbp

3. Increased collaboration and communication among team members by
providing a central repository for software artifacts.

4. Improved quality and stability of software systems by ensuring that all
changes are properly controlled and managed.

The main disadvantages of SCM

1. Increased complexity and overhead, particularly in large software systems.

2. Difficulty in managing dependencies and ensuring that all changes are
properly integrated.

3. Potential for conflicts and delays, particularly in large development teams with
multiple contributors.

System configuration management – Software Engineering

Whenever software is built, there is always scope for improvement and those
improvements bring picture changes. Changes may be required to modify or update any
existing solution or to create a new solution for a problem. Requirements keep on
changing daily so we need to keep on upgrading our systems based on the current
requirements and needs to meet desired outputs. Changes should be analyzed before
they are made to the existing system, recorded before they are implemented, reported to
have details of before and after, and controlled in a manner that will improve quality and
reduce error. This is where the need for System Configuration Management comes.
System Configuration Management (SCM) is an arrangement of exercises that controls
change by recognizing the items for change, setting up connections between those
things, making/characterizing instruments for overseeing diverse variants, controlling
the changes being executed in the current framework, inspecting and revealing/reporting
on the changes made. It is essential to control the changes because if the changes are
not checked legitimately then they may wind up undermining a well-run programming. In
this way, SCM is a fundamental piece of all project management activities.
Processes involved in SCM – Configuration management provides a disciplined
environment for smooth control of work products.

Short note on Project Scheduling

A schedule in your project’s time table actually consists of sequenced activities and milestones
that are needed to be delivered under a given period of time.
Project schedule simply means a mechanism that is used to communicate and know about
that tasks are needed and has to be done or performed and which organizational resources will
be given or allocated to these tasks and in what time duration or time frame work is needed to
be performed. Effective project scheduling leads to success of project, reduced cost, and
increased customer satisfaction. Scheduling in project management means to list out activities,
deliverables, and milestones within a project that are delivered. It contains more notes than your
average weekly planner notes. The most common and important form of project schedule is
Gantt chart.

Process :
The manager needs to estimate time and resources of project while scheduling project. All
activities in project must be arranged in a coherent sequence that means activities should be
arranged in a logical and well-organized manner for easy to understand. Initial estimates of
project can be made optimistically which means estimates can be made when all favorable
things will happen and no threats or problems take place.
The total work is separated or divided into various small activities or tasks during project
schedule. Then, Project manager will decide time required for each activity or task to get
completed. Even some activities are conducted and performed in parallel for efficient
performance. The project manager should be aware of fact that each stage of project is not
problem-free.
Problems arise during Project Development Stage :

● People may leave or remain absent during particular stage of development.

● Hardware may get failed while performing.

● Software resource that is required may not be available at present, etc.
The project schedule is represented as set of chart in which work-breakdown structure and
dependencies within various activities are represented. To accomplish and complete project
within a given schedule, required resources must be available when they are needed.
Therefore, resource estimation should be done before starting development.
Resources required for Development of Project :

● Human effort

● Sufficient disk space on server

● Specialized hardware

● Software technology

● Travel allowance required by project staff, etc.
Advantages of Project Scheduling :
There are several advantages provided by project schedule in our project management:

● It simply ensures that everyone remains on same page as far as tasks get
completed, dependencies, and deadlines.

● It helps in identifying issues early and concerns such as lack or unavailability of
resources.

● It also helps to identify relationships and to monitor process.

● It provides effective budget management and risk mitigation.

What is DevOps?

The DevOps is a combination of two words, one is software Development, and second is
Operations. This allows a single team to handle the entire application lifecycle, from
development to testing, deployment, and operations. DevOps helps you to reduce the
disconnection between software developers, quality assurance (QA) engineers, and system
administrators.

DevOps promotes collaboration between Development and Operations team to deploy code to
production faster in an automated & repeatable way.
DevOps helps to increase organization speed to deliver applications and services. It also allows
organizations to serve their customers better and compete more strongly in the market.
DevOps can also be defined as a sequence of development and IT operations with better
communication and collaboration.
DevOps has become one of the most valuable business disciplines for enterprises or
organizations. With the help of DevOps, quality, and speed of the application delivery has
improved to a great extent.
DevOps is nothing but a practice or methodology of making "Developers" and "Operations"
folks work together. DevOps represents a change in the IT culture with a complete focus on
rapid IT service delivery through the adoption of agile practices in the context of a system-
oriented approach.
DevOps is all about the integration of the operations and development process. Organizations
that have adopted DevOps noticed a 22% improvement in software quality and a 17%
improvement in application deployment frequency and achieve a 22% hike in customer
satisfaction. 19% of revenue hikes as a result of the successful DevOps implementation.

Why DevOps?

Before going further, we need to understand why we need the DevOps over the other methods.

○ The operation and development team worked in complete isolation.

○ After the design-build, the testing and deployment are performed respectively. That's
why they consumed more time than actual build cycles.

○ Without the use of DevOps, the team members are spending a large amount of time on
designing, testing, and deploying instead of building the project.

○ Manual code deployment leads to human errors in production.

○ Coding and operation teams have their separate timelines and are not in synch, causing
further delays.

DevOps History

○ In 2009, the first conference named DevOpsdays was held in Ghent Belgium. Belgian

consultant and Patrick Debois founded the conference.

○ In 2012, the state of DevOps report was launched and conceived by Alanna Brown at
Puppet.

○ In 2014, the annual State of DevOps report was published by Nicole Forsgren, Jez
Humble, Gene Kim, and others. They found DevOps adoption was accelerating in 2014
also.

○ In 2015, Nicole Forsgren, Gene Kim, and Jez Humble founded DORA (DevOps
Research and Assignment).

○ In 2017, Nicole Forsgren, Gene Kim, and Jez Humble published "Accelerate: Building
and Scaling High Performing Technology Organizations".

DevOps Architecture Features

Here are some key features of DevOps architecture, such as:

1) Automation

Automation can reduce time consumption, especially during the testing and deployment phase.
The productivity increases, and releases are made quicker by automation. This will lead in
catching bugs quickly so that it can be fixed easily. For contiguous delivery, each code is
defined through automated tests, cloud-based services, and builds. This promotes production
using automated deploys.

2) Collaboration

The Development and Operations team collaborates as a DevOps team, which improves the
cultural model as the teams become more productive with their productivity, which strengthens
accountability and ownership. The teams share their responsibilities and work closely in sync,
which in turn makes the deployment to production faster.

3) Integration

Applications need to be integrated with other components in the environment. The integration
phase is where the existing code is combined with new functionality and then tested.
Continuous integration and testing enable continuous development. The frequency in the
releases and micro-services leads to significant operational challenges. To overcome such
problems, continuous integration and delivery are implemented to deliver in a quicker, safer,
and reliable manner.

4) Configuration management

It ensures the application to interact with only those resources that are concerned with the
environment in which it runs. The configuration files are not created where the external
configuration to the application is separated from the source code. The configuration file can be
written during deployment, or they can be loaded at the run time, depending on the environment
in which it is running.

DevOps Advantages and Disadvantages

Here are some advantages and disadvantages that DevOps can have for business, such as:

Advantages

○ DevOps is an excellent approach for quick development and deployment of applications.

○ It responds faster to the market changes to improve business growth.

○ DevOps escalate business profit by decreasing software delivery time and transportation
costs.

○ DevOps clears the descriptive process, which gives clarity on product development and
delivery.

○ It improves customer experience and satisfaction.

○ DevOps simplifies collaboration and places all tools in the cloud for customers to access.

○ DevOps means collective responsibility, which leads to better team engagement and
productivity.

Disadvantages

○ DevOps professional or expert's developers are less available.

○ Developing with DevOps is so expensive.

○ Adopting new DevOps technology into the industries is hard to manage in short time.

○ Lack of DevOps knowledge can be a problem in the continuous integration of
automation projects

DevOps Architecture

Development and operations both play essential roles in order to deliver applications. The
deployment comprises analyzing the requirements, designing, developing, and testing of the
software components or frameworks.
The operation consists of the administrative processes, services, and support for the software.
When both the development and operations are combined with collaborating, then the DevOps
architecture is the solution to fix the gap between deployment and operation terms; therefore,
delivery can be faster.
DevOps architecture is used for the applications hosted on the cloud platform and large
distributed applications. Agile Development is used in the DevOps architecture so that
integration and delivery can be contiguous. When the development and operations team works
separately from each other, then it is time-consuming to design, test, and deploy. And if the
terms are not in sync with each other, then it may cause a delay in the delivery. So DevOps
enables the teams to change their shortcomings and increases productivity.
Below are the various components that are used in the DevOps architecture:

1) Build

Without DevOps, the cost of the consumption of the resources was evaluated based on the pre-
defined individual usage with fixed hardware allocation. And with DevOps, the usage of cloud,
sharing of resources comes into the picture, and the build is dependent upon the user's need,
which is a mechanism to control the usage of resources or capacity.

2) Code

Many good practices such as Git enables the code to be used, which ensures writing the code
for business, helps to track changes, getting notified about the reason behind the difference in
the actual and the expected output, and if necessary reverting to the original code developed.
The code can be appropriately arranged in files, folders, etc. And they can be reused.

3) Test

The application will be ready for production after testing. In the case of manual testing, it
consumes more time in testing and moving the code to the output. The testing can be
automated, which decreases the time for testing so that the time to deploy the code to
production can be reduced as automating the running of the scripts will remove many manual
steps.

4) Plan

DevOps use Agile methodology to plan the development. With the operations and development
team in sync, it helps in organizing the work to plan accordingly to increase productivity.

5) Monitor

Continuous monitoring is used to identify any risk of failure. Also, it helps in tracking the system
accurately so that the health of the application can be checked. The monitoring becomes more
comfortable with services where the log data may get monitored through many third-party tools
such as Splunk.

6) Deploy

Many systems can support the scheduler for automated deployment. The cloud management
platform enables users to capture accurate insights and view the optimization scenario,
analytics on trends by the deployment of dashboards.

7) Operate

DevOps changes the way traditional approach of developing and testing separately. The teams
operate in a collaborative way where both the teams actively participate throughout the service
lifecycle. The operation team interacts with developers, and they come up with a monitoring
plan which serves the IT and business requirements.

8) Release

Deployment to an environment can be done by automation. But when the deployment is made
to the production environment, it is done by manual triggering. Many processes involved in
release management commonly used to do the deployment in the production environment
manually to lessen the impact on the customers.

DevOps Lifecycle

DevOps defines an agile relationship between operations and Development. It is a process that
is practiced by the development team and operational engineers together from beginning to the
final stage of the product.

Learning DevOps is not complete without understanding the DevOps lifecycle phases. The
DevOps lifecycle includes seven phases as given below:

1) Continuous Development

This phase involves the planning and coding of the software. The vision of the project is decided
during the planning phase. And the developers begin developing the code for the application.
There are no DevOps tools that are required for planning, but there are several tools for
maintaining the code.

2) Continuous Integration

This stage is the heart of the entire DevOps lifecycle. It is a software development practice in
which the developers require to commit changes to the source code more frequently. This may
be on a daily or weekly basis. Then every commit is built, and this allows early detection of
problems if they are present. Building code is not only involved compilation, but it also includes
unit testing, integration testing, code review, and packaging.
The code supporting new functionality is continuously integrated with the existing code.
Therefore, there is continuous development of software. The updated code needs to be
integrated continuously and smoothly with the systems to reflect changes to the end-users.

Jenkins is a popular tool used in this phase. Whenever there is a change in the Git repository,
then Jenkins fetches the updated code and prepares a build of that code, which is an
executable file in the form of war or jar. Then this build is forwarded to the test server or the
production server.

3) Continuous Testing

This phase, where the developed software is continuously testing for bugs. For constant testing,
automation testing tools such as TestNG, JUnit, Selenium, etc are used. These tools allow
QAs to test multiple code-bases thoroughly in parallel to ensure that there is no flaw in the
functionality. In this phase, Docker Containers can be used for simulating the test environment.

Selenium does the automation testing, and TestNG generates the reports. This entire testing
phase can automate with the help of a Continuous Integration tool called Jenkins.
Automation testing saves a lot of time and effort for executing the tests instead of doing this
manually. Apart from that, report generation is a big plus. The task of evaluating the test cases
that failed in a test suite gets simpler. Also, we can schedule the execution of the test cases at
predefined times. After testing, the code is continuously integrated with the existing code.

4) Continuous Monitoring

Monitoring is a phase that involves all the operational factors of the entire DevOps process,
where important information about the use of the software is recorded and carefully processed
to find out trends and identify problem areas. Usually, the monitoring is integrated within the
operational capabilities of the software application.
It may occur in the form of documentation files or maybe produce large-scale data about the
application parameters when it is in a continuous use position. The system errors such as
server not reachable, low memory, etc are resolved in this phase. It maintains the security and
availability of the service.

5) Continuous Feedback

The application development is consistently improved by analyzing the results from the
operations of the software. This is carried out by placing the critical phase of constant feedback
between the operations and the development of the next version of the current software
application.
The continuity is the essential factor in the DevOps as it removes the unnecessary steps which
are required to take a software application from development, using it to find out its issues and
then producing a better version. It kills the efficiency that may be possible with the app and
reduce the number of interested customers.

6) Continuous Deployment

In this phase, the code is deployed to the production servers. Also, it is essential to ensure that
the code is correctly used on all the servers.

The new code is deployed continuously, and configuration management tools play an essential
role in executing tasks frequently and quickly. Here are some popular tools which are used in
this phase, such as Chef, Puppet, Ansible, and SaltStack.
Containerization tools are also playing an essential role in the deployment phase. Vagrant and
Docker are popular tools that are used for this purpose. These tools help to produce
consistency across development, staging, testing, and production environment. They also help
in scaling up and scaling down instances softly.
Containerization tools help to maintain consistency across the environments where the
application is tested, developed, and deployed. There is no chance of errors or failure in the
production environment as they package and replicate the same dependencies and packages
used in the testing, development, and staging environment. It makes the application easy to run
on different computers.

7) Continuous Operations

All DevOps operations are based on the continuity with complete automation of the release
process and allow the organization to accelerate the overall time to market continuingly.
It is clear from the discussion that continuity is the critical factor in the DevOps in removing
steps that often distract the development, take it longer to detect issues and produce a better
version of the product after several months. With DevOps, we can make any software product
more efficient and increase the overall count of interested customers in your product.

DevOps Pipeline
A pipeline in software engineering team is a set of automated processes which allows DevOps
professionals and developer to reliably and efficiently compile, build, and deploy their code to
their production compute platforms.
The most common components of a pipeline in DevOps are build automation or continuous
integration, test automation, and deployment automation.
A pipeline consists of a set of tools which are classified into the following categories such as:

○ Source control

○ Build tools

○ Containerization

○ Configuration management

○ Monitoring

Continuous Integration Pipeline

Continuous integration (CI) is a practice in which developers can check their code into a
version-controlled repository several times per day. Automated build pipelines are triggered by
these checks which allows fast and easy to locate error detection.
Some significant benefits of CI are:

○ Small changes are easy to integrate into large codebases.

○ More comfortable for other team members to see what you have been working.

○ Fewer integration issues allowing rapid code delivery.

○ Bugs are identified early, making them easier to fix, resulting in less debugging work.

AD

Continuous Delivery Pipeline

Continuous delivery (CD) is the process that allows operation engineers and developers to
deliver bug fixes, features, and configuration change into production reliably, quickly, and
sustainably. Continuous delivery offers the benefits of code delivery pipelines, which are carried
out that can be performed on demand.
Some significant benefits of the CD are:

○ Faster bug fixes and features delivery.

○ CD allows the team to work on features and bug fixes in small batches, which means
user feedback received much quicker. It reduces the overall time and cost of the project.

DevOps Tools

Here are some most popular DevOps tools with brief explanation shown in the below image,
such as:

1) Puppet

Puppet is the most widely used DevOps tool. It allows the delivery and release of the technology
changes quickly and frequently. It has features of versioning, automated testing, and continuous
delivery. It enables to manage entire infrastructure as code without expanding the size of the
team.
Features

○ Real-time context-aware reporting.

○ Model and manage the entire environment.

○ Defined and continually enforce infrastructure.

○ Desired state conflict detection and remediation.

○ It inspects and reports on packages running across the infrastructure.

○ It eliminates manual work for the software delivery process.

○ It helps the developer to deliver great software quickly.

2) Ansible

Ansible is a leading DevOps tool. Ansible is an open-source IT engine that automates
application deployment, cloud provisioning, intra service orchestration, and other IT tools. It
makes it easier for DevOps teams to scale automation and speed up productivity.
Ansible is easy to deploy because it does not use any agents or custom security infrastructure
on the client-side, and by pushing modules to the clients. These modules are executed locally
on the client-side, and the output is pushed back to the Ansible server.
Features

○ It is easy to use to open source deploy applications.

○ It helps in avoiding complexity in the software development process.

○ It eliminates repetitive tasks.

○ It manages complex deployments and speeds up the development process.

3) Docker

Docker is a high-end DevOps tool that allows building, ship, and run distributed applications on
multiple systems. It also helps to assemble the apps quickly from the components, and it is
typically suitable for container management.
Features

○ It configures the system more comfortable and faster.

○ It increases productivity.

○ It provides containers that are used to run the application in an isolated environment.

○ It routes the incoming request for published ports on available nodes to an active
container. This feature enables the connection even if there is no task running on the
node.

○ It allows saving secrets into the swarm itself.

4) Nagios

Nagios is one of the more useful tools for DevOps. It can determine the errors and rectify them
with the help of network, infrastructure, server, and log monitoring systems.
Features

○ It provides complete monitoring of desktop and server operating systems.

○ The network analyzer helps to identify bottlenecks and optimize bandwidth utilization.

○ It helps to monitor components such as services, application, OS, and network protocol.

○ It also provides complete monitoring of Java Management Extensions.

5) CHEF

A chef is a useful tool for achieving scale, speed, and consistency. The chef is a cloud-based
system and open source technology. This technology uses Ruby encoding to develop essential
building blocks such as recipes and cookbooks. The chef is used in infrastructure automation
and helps in reducing manual and repetitive tasks for infrastructure management.
Chef has got its convention for different building blocks, which are required to manage and
automate infrastructure.
Features

○ It maintains high availability.

○ It can manage multiple cloud environments.

○ It uses popular Ruby language to create a domain-specific language.

○ The chef does not make any assumptions about the current status of the node. It uses
its mechanism to get the current state of the machine.

6) Jenkins

Jenkins is a DevOps tool for monitoring the execution of repeated tasks. Jenkins is a software
that allows continuous integration. Jenkins will be installed on a server where the central build
will take place. It helps to integrate project changes more efficiently by finding the issues
quickly.
Features

○ Jenkins increases the scale of automation.

○ It can easily set up and configure via a web interface.

○ It can distribute the tasks across multiple machines, thereby increasing concurrency.

○ It supports continuous integration and continuous delivery.

○ It offers 400 plugins to support the building and testing any project virtually.

○ It requires little maintenance and has a built-in GUI tool for easy updates.

7) Git

Git is an open-source distributed version control system that is freely available for everyone. It is
designed to handle minor to major projects with speed and efficiency. It is developed to co-
ordinate the work among programmers. The version control allows you to track and work
together with your team members at the same workspace. It is used as a critical distributed
version-control for the DevOps tool.

○ It is a free open source tool.

○ It allows distributed development.

○ It supports the pull request.

○ It enables a faster release cycle.

○ Git is very scalable.

○ It is very secure and completes the tasks very fast.

8) SALTSTACK

Stackify is a lightweight DevOps tool. It shows real-time error queries, logs, and more directly
into the workstation. SALTSTACK is an ideal solution for intelligent orchestration for the
software-defined data center.
Features

○ It eliminates messy configuration or data changes.

○ It can trace detail of all the types of the web request.

○ It allows us to find and fix the bugs before production.

○ It provides secure access and configures image caches.

○ It secures multi-tenancy with granular role-based access control.

○ Flexible image management with a private registry to store and manage images.

9) Splunk

Splunk is a tool to make machine data usable, accessible, and valuable to everyone. It delivers
operational intelligence to DevOps teams. It helps companies to be more secure, productive,
and competitive.
Features

○ It has the next-generation monitoring and analytics solution.

○ It delivers a single, unified view of different IT services.

○ Extend the Splunk platform with purpose-built solutions for security.

○ Data drive analytics with actionable insight.

10) Selenium

Selenium is a portable software testing framework for web applications. It provides an easy
interface for developing automated tests.
Features

○ It is a free open source tool.

○ It supports multiplatform for testing, such as Android and ios.

○ It is easy to build a keyword-driven framework for a WebDriver.

○ It creates robust browser-based regression automation suites and tests.

○

